
PART ONE

DYNAMICS OF A SINGLE PARTICLE
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1 Kinematics of a Particle

1.1 Introduction

One of the main goals of this book is to enable the reader to take a physical sys-
tem, model it by using particles or rigid bodies, and then interpret the results of the
model. For this to happen, the reader needs to be equipped with an array of tools
and techniques, the cornerstone of which is to be able to precisely formulate the
kinematics of a particle. Without this foundation in place, the future conclusions on
which they are based either do not hold up or lack conviction.

Much of the material presented in this chapter will be repeatedly used through-
out the book. We start the chapter with a discussion of coordinate systems for a
particle moving in a three-dimensional space. This naturally leads us to a discussion
of curvilinear coordinate systems. These systems encompass all of the familiar co-
ordinate systems, and the material presented is useful in many other contexts. At
the conclusion of our discussion of coordinate systems and its application to particle
mechanics, you should be able to establish expressions for gradient and acceleration
vectors in any coordinate system.

The other major topics of this chapter pertain to constraints on the motion of
particles. In earlier dynamics courses, these topics are intimately related to judi-
cious choices of coordinate systems to solve particle problems. For such problems,
a constraint was usually imposed on the position vector of a particle. Here, we also
discuss time-varying constraints on the velocity vector of the particle. Along with
curvilinear coordinates, the topic of constraints is one most readers will not have
seen before and for many they will hopefully constitute an interesting thread that
winds its way through this book.

1.2 Reference Frames

To describe the kinematics of particles and rigid bodies, we presume on the ex-
istence of a space with a set of three mutually perpendicular axes that meet at a
common point P. The set of axes and the point P constitute a reference frame. In
Newtonian mechanics, we also assume the existence of an inertial reference frame.
In this frame, the point P moves at a constant speed.
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4 Kinematics of a Particle

Path of the particle
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Figure 1.1. The path of a particle moving in E
3. The position

vector, velocity vector, and areal velocity vector of this particle
at time t and the position vector of the particle at time t + �t
are shown.

Depending on the application, it is often convenient to idealize the inertial
reference frame. For example, for ballistics problems, the Earth’s rotation and
the translation of its center are ignored and one assumes that a point, say E,
on the Earth’s surface can be considered as fixed. The point E, along with three
orthonormal vectors that are fixed to it (and the Earth), is then taken to approximate
an inertial reference frame. This approximate inertial reference frame, however,
is insufficient if we wish to explain the behavior of Foucault’s famous pendulum
experiment. In this experiment from 1851, Léon Foucault (1819–1868) ingeniously
demonstrated the rotation of the Earth by using the motion of a pendulum.∗ To
explain this experiment, it is sufficient to assume the existence of an inertial frame
whose point P is at the fixed center of the rotating Earth and whose axes do not
rotate with the Earth. As another example, when the motion of the Earth about the
Sun is explained, it is standard to assume that the center S of the Sun is fixed and to
choose P to be this point. The point S is then used to construct an inertial reference
frame. Other applications in celestial mechanics might need to consider the location
of the point P for the inertial reference frame as the center of mass of the solar sys-
tem with the three fixed mutually perpendicular axes defined by use of certain fixed
stars [80].

For the purposes of this text, we assume the existence of a fixed point O and
a set of three mutually perpendicular axes that meet at this point (see Figure 1.1).
The set of axes is chosen to be the basis vectors for a Cartesian coordinate system.
Clearly, the axes and the point O are an inertial reference frame. The space that
this reference frame occupies is a three-dimensional space. Vectors can be defined
in this space, and an inner product for these vectors is easy to construct with the dot
product. As such, we refer to this space as a three-dimensional Euclidean space and
we denote it by E

3.

∗ Discussions of his experiment and their interpretation can be found in [62, 138, 207]. Among his
other contributions [215], Foucault is also credited with introducing the term “gyroscope.”
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1.3 Kinematics of a Particle 5

1.3 Kinematics of a Particle

Suppose a single particle of mass m is in motion in E
3. The position vector of the

particle relative to a fixed origin O is denoted by r (see Figure 1.1). In mechanics,
this vector is usually considered to be a function of time t: r = r(t).

The velocity v and acceleration a vectors of the particle are defined to be the
respective first and second time derivatives of the position vector:

v = dr
dt

, a = dv
dt

= d2r
dt2

.

It is crucial to note that, because r is measured relative to a fixed origin, v and a are
the absolute velocity and acceleration vectors. By definition, the velocity vector can
be calculated from the following limit:

v(t) = lim
�t→0

r (t + �t) − r(t)
�t

.

We also use an overdot to denote the time derivative: v = ṙ and a = r̈.
Supplementary to the aforementioned kinematical quantities, we also have the

linear momentum G of the particle:

G = mv.

Further, the angular momentum HO of the particle relative to O is

HO = r × mv.

As we now show, this vector is related to the areal velocity vector A.
As used in celestial mechanics, the magnitude of the areal velocity vector is the

rate at which the position vector r of the particle sweeps out an area about the fixed
point O (see, e.g., Moulton [150]). To establish an expression for this vector, we
consider the position vector of the particle at time t and t + �t. Then, the area of the
parallelogram defined by these vectors is ‖r(t) × r (t + �t)‖ (see Figure 1.1). This is
twice the area swept out by the particle during the interval �t. Taking the limit of
the vector r(t)×r(t+�t)

2�t as �t → 0 and using the fact that r(t) × r(t) = 0, we arrive at
an expression for the areal velocity vector A (t):

A (t) = lim
�t→0

r(t) × r (t + �t)
2�t

= 1
2

r(t) ×
(

lim
�t→0

r (t + �t)
�t

)

= 1
2

r(t) ×
(

lim
�t→0

r (t + �t) − r (t)
�t

)
.

That is,

A = 1
2

r × v. (1.1)
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6 Kinematics of a Particle

The vector A plays an important role in several mechanics problems in which either
the angular momentum HO is constant or a component of HO is constant. Several
other examples of its use are discussed in the exercises at the end of this chapter.

Finally, we recall the definition of the kinetic energy T of the particle:

T = 1
2

mv · v.

The definitions of the kinematical quantities that have been introduced are inde-
pendent of the coordinate system that is used for E

3. In solving most problems, it is
crucial to have expressions for momenta and energies in terms of the chosen coor-
dinate system. It is to this issue that we now turn.

1.4 Frequently Used Coordinate Systems

Depending on the problem of interest, there are several suitable coordinate sys-
tems for E

3. The most commonly used systems are Cartesian coordinates {x = x1,

y = x2, z = x3}, cylindrical polar coordinates {r, θ, z}, and spherical polar coordinates
{R, φ, θ}. All of these coordinate systems can be considered as specific examples of
a curvilinear coordinate system {q1, q2, q3} for E

3, which we will discuss later on in
this chapter.

Cartesian Coordinate System
For the Cartesian coordinate system, a set of right–handed orthonormal vectors are
defined: {E1, E2, E3}. Given any vector b in E

3, this vector has the representation

b =
3∑

i=1

biEi.

For the position vector r, we also have

r =
3∑

i=1

xiEi,

where {x1, x2, x3} are the Cartesian coordinates of the particle. Because Ei are fixed
in both magnitude and direction, their time derivatives are zero: Ėi = 0.

Cylindrical Polar Coordinates
A cylindrical polar coordinate system {r, θ, z} can be defined by a Cartesian coordi-
nate system as follows:

r =
√

x2
1 + x2

2, θ = tan−1
(

x2

x1

)
, z = x3,

where θ ∈ [0, 2π). Provided r �= 0, then we can invert these relations to find that

x1 = r cos(θ), x2 = r sin(θ), x3 = z.

In other words, given (x1, x2, x3), a unique (r, θ, z) exists provided (x1, x2) �= (0, 0).
Otherwise, when r = 0, the coordinate θ is ambiguous.
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1.4 Frequently Used Coordinate Systems 7
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Figure 1.2. Cylindrical polar coordinates r, θ, and z.

Given a position vector r, we can write

r = x1E1 + x2E2 + x3E3

= r(cos(θ)E1 + sin(θ)E2) + zE3

= rer + zE3,

where, as shown in Figure 1.2, er = cos(θ)E1 + sin(θ)E2.
It is convenient to define the set of unit vectors {er, eθ, Ez}:

er = cos(θ)E1 + sin(θ)E2, eθ = cos(θ)E2 − sin(θ)E1, ez = E3.

We also notice that ėr = θ̇eθ, whereas ėθ = −θ̇er. We should also verify that
{er, eθ, Ez} is a right-handed orthonormal basis for E

3.∗

Spherical Polar Coordinates
A spherical polar coordinate system {R, φ, θ} can be defined by a Cartesian coordi-
nate system as follows:

R =
√

x2
1 + x2

2 + x2
3, θ = tan−1

(
x2

x1

)
, φ = tan−1

⎛
⎝

√
x2

1 + x2
2

x3

⎞
⎠ ,

where θ ∈ [0, 2π) and φ ∈ (0, π). Provided φ �= 0 or π, we can invert these relations
to find

x1 = R cos(θ) sin(φ), x2 = R sin(θ) sin(φ), x3 = R cos(φ).

Given a position vector r, we can now write

r = x1E1 + x2E2 + x3E3

= R sin(φ)(cos(θ)E1 + sin(θ)E2) + R cos(φ)E3

= ReR,

where, as shown in Figure 1.3, eR = sin(φ) cos(θ)E1 + sin(φ) sin(θ)E2 + cos(φ)E3.

∗ A basis {p1, p2, p3} is right-handed if p3 · (p1 × p2) > 0 and is orthonormal if the magnitude of each
of the vectors pi is 1 and they are mutually perpendicular: p1 · p2 = 0, p2 · p3 = 0, and p1 · p3 = 0.
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8 Kinematics of a Particle
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Figure 1.3. The spherical polar coordinates φ and θ.

For future purposes, it is convenient to define the right-handed orthonormal set
of vectors {eR, eφ, eθ}:

⎡
⎢⎣

eR

eφ

eθ

⎤
⎥⎦ =

⎡
⎢⎣

cos(θ) sin(φ) sin(θ) sin(φ) cos(φ)

cos(θ) cos(φ) sin(θ) cos(φ) − sin(φ)

− sin(θ) cos(θ) 0

⎤
⎥⎦

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ .

To establish the relations between these vectors and those defined earlier, we first
calculate the intermediate relations⎡

⎢⎣
er

eθ

E3

⎤
⎥⎦ =

⎡
⎢⎣

cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ ,

⎡
⎢⎣

eR

eφ

eθ

⎤
⎥⎦ =

⎡
⎢⎣

sin(φ) 0 cos(φ)

cos(φ) 0 − sin(φ)

0 1 0

⎤
⎥⎦

⎡
⎢⎣

er

eθ

E3

⎤
⎥⎦ . (1.2)

These results enable us to transform among the three distinct sets of basis vectors.
As with the cylindrical polar coordinate system, the basis vectors we defined for

the spherical polar coordinate system vary with the coordinates. Indeed, assuming
that θ and φ are functions of time, a series of long calculations using (1.2) reveals
that ⎡

⎢⎣
ėR

ėφ

ėθ

⎤
⎥⎦ =

⎡
⎢⎣

0 φ̇ θ̇ sin(φ)

−φ̇ 0 θ̇ cos(φ)

−θ̇ sin(φ) −θ̇ cos(φ) 0

⎤
⎥⎦

⎡
⎢⎣

eR

eφ

eθ

⎤
⎥⎦ . (1.3)

These relations have an interesting form: Notice that the matrix in (1.3) is skew-
symmetric. We shall see numerous examples of this later on when we discuss rota-
tions and their time derivatives. Our later discussion should allow us to verify (1.3)
rather easily.
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1.5 Curvilinear Coordinates 9

1.5 Curvilinear Coordinates

The preceeding examples of coordinate systems can be considered as specific ex-
amples of a curvilinear coordinate system. The development of the vector calculus
associated with such a system will be the focal point of this section of the book.
Curvilinear coordinate systems have featured prominently in all areas of mechan-
ics, and the material presented here has a wide range of applications. Most of our
discussion is based on classical works and can be found in various textbooks on ten-
sor calculus. Of these books, the one closest in spirit (and notation) to our treatment
here is that of Simmonds [198]; [139, 201] are also recommended.

Consider a curvilinear coordinate system {q1, q2, q3} that is defined by the
functions

q1 = q̂1 (x1, x2, x3) ,

q2 = q̂2 (x1, x2, x3) ,

q3 = q̂3 (x1, x2, x3) . (1.4)

We assume that the functions q̂i are locally invertible:

x1 = x̂1
(
q1, q2, q3) ,

x2 = x̂2
(
q1, q2, q3) ,

x3 = x̂3
(
q1, q2, q3) . (1.5)

This invertibility implies that, given the curvilinear coordinates of any point in E
3,

there is a unique set of Cartesian coordinates for this point and vice versa. Usually,
the invertibility breaks down at several points in E

3. For instance, the cylindrical
polar coordinate θ is not uniquely defined when x2

1 + x2
2 = 0. This set of points

corresponds to the x3 axis.
Assuming invertibility, and fixing the value of one of the curvilinear coordi-

nates, q1 say, to equal q1
0, we can determine the values of x1, x2, and x3 such that the

equation

q1
0 = q̂1 (x1, x2, x3)

is satisfied. The union of all the points represented by these Cartesian coordinates
defines a surface that is known as the q1 coordinate surface (cf. Figure 1.4). If we
move on this surface we find that the coordinates q2 and q3 will vary. Indeed, the
curves on the q1 coordinate surface that we find by varying q2 while keeping q3

fixed are known as q2 coordinate curves.
More generally, the surface corresponding to a constant value of a coordinate

qj is known as a qj coordinate surface. Similarly, the curve we obtain by varying the
coordinate qk while fixing the remaining two curvilinear coordinates is known as a
qk coordinate curve.
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10 Kinematics of a Particle

O

q2 coordinate curve
q3 coordinate curve

q1 coordinate surface

a2

a3

a1

S

Figure 1.4. An example of a q1 coordinate surface S. At a point on this surface, a1 is normal
to the surface, and a2 and a3 are tangent to the surface. The q1 coordinate surface S is foliated
by curves of constant q2 and q3.

Covariant Basis Vectors

Again assuming invertibility, we can express the position vector r of any point as a
function of the curvilinear coordinates:

r =
3∑

i=1

x̂i
(
q1, q2, q3) Ei.

It is also convenient to define the covariant basis vectors a1, a2, and a3:

ai = ∂r
∂qi

=
3∑

k=1

∂x̂k

∂qi
Ek.

Mathematically, when we take the derivative with respect to q2 we fix q1 and q3;
consequently, a2 points in the direction of increasing q2. As a result, a2 is tangent to
a q2 coordinate curve. In general, ai is tangent to a qi coordinate curve.

You should notice that we can express the relationship between the covariant
basis vectors and the Cartesian basis vectors in a matrix form:⎡

⎢⎣
a1

a2

a3

⎤
⎥⎦ =

⎡
⎢⎢⎣

∂x̂1
∂q1

∂x̂2
∂q1

∂x̂3
∂q1

∂x̂1
∂q2

∂x̂2
∂q2

∂x̂3
∂q2

∂x̂1
∂q3

∂x̂2
∂q3

∂x̂3
∂q3

⎤
⎥⎥⎦

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ .

It is a good exercise to write out the matrix in the preceding equation for various ex-
amples of curvilinear coordinate systems, for instance, cylindrical polar coordinates.
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1.5 Curvilinear Coordinates 11

Contravariant Basis Vectors
Curvilinear coordinate systems also have a second set of associated basis vectors:
{a1, a2, a3}. These vectors are known as the contravariant basis vectors. One method
of defining them is as follows:

a1 =
3∑

i=1

∂q̂1

∂xi
Ei, a2 =

3∑
i=1

∂q̂2

∂xi
Ei, a3 =

3∑
i=1

∂q̂3

∂xi
Ei.

That is,

ak = ∇qk.

Geometrically, ai is normal to a qi coordinate surface. However, as in the case of the
covariant basis vectors, the contravariant basis vectors are not necessarily unit vec-
tors, nor do they form an orthonormal basis for E

3. Using the chain rule of calculus,
we can show that

ai · aj = δi
j,

where δi
j is the Kronecker delta. As discussed in the Appendix, δi

j = 1 if i = j and is
0 otherwise. It is left as an exercise for the reader to show this result.∗

Covariant and Contravariant Components
As {a1, a2, a3} and {a1, a2, a3} form bases for E

3, any vector b can be described as
linear combinations of either sets of vectors:

b =
3∑

i=1

biai =
3∑

k=1

bkak.

The components bi are known as the contravariant components, and the compo-
nents bk are known as the covariant components:

b · ai =
(

3∑
k=1

bkak

)
· ai =

3∑
k=1

bkδ
k
i = bi,

b · ai =
(

3∑
k=1

bkak

)
· ai =

3∑
k=1

bkδi
k = bi.

It is very important to note that bk �= b · ak in general because ai · ak is not necessar-
ily equal to δi

k.
The trivial case in which xi = qi deserves particular mention. For this case,

r = ∑3
k=1 xiEi. Consequently, ai = Ei. In addition, ai = Ei, and the covariant and

contravariant basis vectors are equal.

∗ The starting point for this exercise is to note that ∂xk
∂xj

= δ
j
k.
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