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Gravitational waves

D. G. Blair, L. Ju, C. Zhao and E. J. Howell

This chapter describes the theory of gravitational waves. We first introduce gravitational
waves and describe how they are generated and propagate through space. We then show
how the luminosity, frequency and amplitude of a gravitational wave source can be defined.
A brief mathematical summary of how gravitational waves are a natural consequence of
Einstein’s general theory of relativity is then provided. To finish, we summarise some
important quantities that are used to describe gravitational wave signal strengths and the
response of detectors to different types of signal.

1.1 Listening to the Universe

Our sense of the Universe is provided predominantly by electromagnetic waves. Dur-
ing the 20th century the opening of the electromagnetic spectrum successively brought
dramatic revelations. For instance, optical astronomy gave us the Hubble law expan-
sion of the Universe. Radio astronomy gave us the cosmic background radiation, the
giant radio jets powered by black holes in galactic nuclei, and neutron stars in the form
of radio pulsars. X-ray astronomy gave us interacting neutron stars and black holes.
Infrared astronomy gave us evidence for a massive black hole in the nucleus of our own
galaxy.

Gravitational waves offer us a new sense with which to understand our Universe. If elec-
tromagnetic astronomy gives us eyes with which we can see the Universe, then gravitational
wave astronomy offers us ears with which to hear it. We are presently deaf to the myriad
gravitational wave sounds of the Universe. Imagine you are in a forest: you see a steep
hillside, massive trees and small shrubs, bright flowers and colourful birds flitting between
the trees. But there is much more to a forest: the sound of the wind in the treetops, the
occasional crash of a falling branch, the thump thump of a fleeing kangaroo, the pulse of
cicadas, the whistles of parrots and honking of bell frogs. The sense of hearing dramatically
enriches our experience.

The gravitational wave universe is likely to be rich with ‘sounds’across a frequency range
from less than one cycle per year (the nanohertz band) up to tens of kilohertz. Sources emit-
ting in the audio frequency band are detectable using Earthbased detectors. Observations in
the microhertz to millihertz range require space-based detectors, while radio pulsar timing
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4 Gravitational waves

can detect in the nanohertz band. At even lower frequencies a gravitational wave signature
from the Big Bang is expected to be frozen in the cosmic microwave background radiation.

Gravitational waves are produced whenever there is a non-spherical acceleration of mass–
energy distributions. The nanohertz to millihertz frequencies consist of highly redshifted
signals from the very early Universe, the slow interactions of very massive black holes and
a weak background from binary star systems. Signal frequencies often scale inversely with
the mass of the relevant systems. Black holes below 100 solar masses and neutron stars will
produce gravitational waves in the audio frequency range: nearly monochromatic whistles
from millisecond pulsars, short bursts from their formation, and chirps as binary systems
spiral together and finally coalesce. Past experience tells us that our imagination and ability
to predict is often limited. The sources we predict today may be just a fraction of what we
will hear when advanced detectors (under construction at the time of writing) and future
third generation detectors are operating at sufficient sensitivity.

Gravitational waves are waves of tidal force. They are vibrations of spacetime which
propagate through space at the speed of light. They are registered as tiny vibrations in the
relative spacings of carefully isolated masses. Their detection is primarily an experimen-
tal science, consisting of the development of the necessary ultra-sensitive measurement
techniques. While gravitational waves can be considered as classical waves, the measure-
ment systems must be treated quantum mechanically since the expected signals generally
approach the limits set by the uncertainty principle.

The binary pulsar system PSR 1913+16 has played a key role in the unfolding story of
gravitational waves. This system has proved Einstein’s theory of general relativity to high
precision, including the quadrupole formula which states that the total emitted gravitational
wave power from any system is proportional to the square of the third time derivative of the
system’s quadrupole moment. The system loses energy exactly as predicted by this formula
(Weisberg and Taylor, 1984; Weisberg and Taylor, 2005). Figure 1.1 shows the impressive
fit of the measured values with the relativistically predicted accumulated shift in periastron
(point of closest approach) due to orbital decay. Hulse and Taylor, who discovered the
system in 1974 (Hulse and Taylor, 1975), were rewarded by a Nobel prize almost 20 years
later. By this time careful monitoring had shown a gravitational wave energy loss from the
system in agreement with theory to better than 1%.

1.2 Gravitational waves in stiff-elastic spacetime

In Newtonian physics spacetime is an infinitely rigid conceptual grid. Gravitational waves
cannot exist in this theory. They would have infinite velocity and infinite energy density,
because in Newtonian gravitation the metrical stiffness of space is infinite. Conversely,
general relativity introduces a finite coupling coefficient between curvature of spacetime,
described by the Einstein curvature tensor, and the stress energy tensor which describes the
mass–energy which gives rise to the curvature. This coupling is expressed by the Einstein
equation

T = c4

8πG
G , (1.1)
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Figure 1.1 The curve indicates the general relativistically predicted accumulated shift in perias-
tron for PSR 1913 + 16 due to the orbital decay by gravitational radiation. The data points indicate
the measured values of the epoch of periastron (courtesy of Wikimedia Commons; data from
Weisberg and Taylor, 2005).

Here T is the stress energy tensor and G is the Einstein curvature tensor, c is the speed
of light and G is Newton’s gravitational constant. The coupling coefficient, c4/8πG, is
an enormous number of order 1043. This expresses the extremely high stiffness of space,
which is the reason that the Newtonian law of gravitation is an excellent approximation
in normal circumstances, and why gravitational waves have a small amplitude, even when
their energy density is very high.

The existence of gravitational waves is intuitively obvious as soon as one recognises
that spacetime is an elastic medium. The basic properties of gravity waves can be easily
deduced from our knowledge of Newtonian gravity, combined with knowledge of the fact
that curvature is a consequence of mass distributions.

First, consider how gravitational waves might be generated. Electromagnetic waves are
generated when charges accelerate. Because a negative charge accelerating to the left is
equivalent to a positive charge accelerating to the right, it is impossible to create a time-
varying electric monopole. The process of varying the charge on one electrode always
creates a time-varying dipole moment. Hence it follows that electromagnetic waves are
generated by time-varying dipole moments. In contrast to electromagnetism, gravity has
only one charge: there is no such thing as negative mass! Hence it is not possible to create
an oscillating mass dipole. Action equals reaction. That is, momentum is conserved and
the acceleration of one mass to the left creates an equal and opposite reaction to the right.
For two equal masses, their spacing can change but the centre of mass is never altered.
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Figure 1.2 (a). The lowest order non-spherical deformation of a ring: the diagonal masses are not
moved. (b) The deformation of a ring of test particles in one cycle of a gravitational wave field.

This means that there is a time-varying quadrupole moment, but there is no variation in
monopole or dipole moment.

To be certain of the quadrupole nature of gravitational waves, think of a system which
collapses under its own gravity. First think of a spherically symmetrical array of masses
that collapse gravitationally towards a point. At a distance there is no difference between
the gravitational field of a point mass and that of the same mass distributed in a uniform
spherical distribution (this is a consequence of the inverse square law, and is also true for
electric fields). Hence the process of gravitational collapse of a spherical distribution creates
no variation in the external gravitational field, and hence no gravitational waves. Clearly
gravitational waves must be created by non-spherical motions of masses. Consider a ring
of eight test masses, such as that illustrated in Figure 1.2.

The simplest non-spherical motion is one in which the edge masses move inwards and
the top and bottom masses move apart, as shown in Figure 1.2(a). Such a quadrupole
motion does vary the external field and does create gravitational waves. For a small amount
of vertical stretching, and an equal horizontal shrinking, it is obvious that the diagonally
placed masses have no radial motion. There is clearly a second polarisation 45 degrees
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Figure 1.3 Gravitational wave field force lines. (a) ‘+’ polarisation; (b) ‘×’ polarisation.

rotated from the first in which the diagonal masses move radially, and the top, bottom
and edge masses have no radial motion. Unlike electromagnetic waves, gravitational wave
polarisations are just 45 degrees apart.

Gravitational wave detection can be easily understood from the symmetry between
sources and detectors – time reversal invariance. A gravitational wave will distort a ring
of test masses in exactly the same way that the distortion of a ring of test masses creates
gravitational waves. The non-spherical deformation pattern we just observed is exactly
like the tidal deformation of the earth created by the gravity gradient due to the moon. A
gravitational wave is indeed a wave of time varying gravity gradient. The amplitude of
a gravitational wave is measured by the relative change in spacing between masses. That
is, the wave amplitude, usually denoted h, is given by �L/L, where L is the equilibrium
spacing and �L is the change of spacing of two test masses. Whereas electromagnetic lumi-
nosity depends on the square of the second time derivative of the electric dipole moment,
the gravitational wave luminosity is proportional to the square of the third time derivative
of the mass quadrupole moment. The extra derivative arises because gravitational wave
generation is associated with the differential acceleration of masses.

The above deformation patterns also apply to solid or fluid bodies. The rigidity of normal
matter is so low compared with that of spacetime that the stiffness of the matter is utterly
negligible. Considering the deformations of Figure 1.2(a) applied to a solid sphere, such as
the Earth, it also follows that the 45◦ points must involve circumferential motions since the
deformation shown acts to transfer matter from the ‘equator’ to the poles in the same way
that the lunar tides act on the Earth.

The gravitational wave has an effective force field determined by the displacement vectors
of the test masses. The force field is discussed further below, and is shown in Figure 1.3.
The force field indicates that detectors can be designed to couple to gravity waves in several
different ways. They may detect straight linear strains, orthogonal strains, or circumferential
strains.
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8 Gravitational waves

1.3 The luminosity of gravitational waves

The weak coupling of gravitational waves to matter is a consequence of the enormous elastic
stiffness of spacetime. If the elastic stiffness of spacetime were infinite (Newtonian physics)
the coupling would be zero. In general relativity, the generation of gravitational waves is
given quantitatively by combining the third time derivative of the quadrupole moment, D,
described previously, with the appropriate coupling constant. The latter can only depend on
the constants G and c (for classical waves), and by dimensional analysis this constant must
have the form G/c5. The gravitational wave luminosity of a source is given by

LG ∼ G

c5

(
d3D

dl3

)2

. (1.2)

Except for a numerical factor, this is the Einstein quadrupole formula (Einstein, 1916).
There are two useful formulae one can derive from equation (1.2). The first is the formula
for a hypothetical terrestrial source or binary star system. The second is for an interacting
black hole system. The terrestrial source might be a pair of oscillating masses joined with a
spring. Ideally the spacing of the masses should change from zero to L. This is achieved in
the edge-on view of a rotating dumbbell or binary star system in a circular orbit, as shown
in Figure 1.4. Viewed edge-on, the masses appear to move in and out periodically twice per
rotation cycle. The quadrupole moment for two masses a distance x apart is Mx2. If the
motion is sinusoidal at an angular frequency of ω, the square of the third time derivative is
∼ M2L4ω6. Thus the gravitational wave luminosity of such a system is

LG ∼ G

c5 M2L4ω6. (1.3)

This equation applied to any natural or artificial source in our Solar System gives a
depressingly small luminosity. This is a consequence of the extraordinarily small value of
G/c5. However, the situation is different in an astrophysical context.

Suppose that the system is a similar binary system, except that it consists of a pair of
gravitationally bound masses, of size such that their escape velocity approaches c and
each has a radius near to the Schwarzschild radius: that is, a pair of black holes. In this
case, using the Schwarzschild radius, rS = 2GM/c2, the luminosity can be expressed in
relativistic units:

LG ∼ c5

G

(v

c

)6( rS

r

)2
. (1.4)

ω

Figure 1.4 A rotating dumbbell or a binary star system, viewed edge-on, has a maximal variation of
quadrupole moment.
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1.4 The amplitude and frequency of gravitational wave sources 9

The remarkable difference between equation (1.3) and equation (1.4) expresses the dif-
ference between the physics of normal matter and that of black holes. Equation (1.3) is
scaled by the tiny factor G/c5, while equation 1.4 is scaled by its enormous reciprocal.
Normal matter in our Solar System creates negligible curvature of spacetime. A black hole
creates an extreme distortion of spacetime. Hence normal matter sources are intrinsically
extremely weak, while very large amplitude waves are created in events such as the coales-
cence of a pair of black holes (for which we would expect v ∼ c when rS ∼ r). The factor
c5/G is roughly the total electromagnetic luminosity of the Universe. This is the upper
limit to the gravitational wave luminosity of black hole systems. In reality equation (1.4)
does not take into account the gravitational redshift effects and other spacetime curvature
effects which act to reduce the maximum luminosity. However, to an order of magnitude,
equation (1.4) indicates the extreme luminosity of gravitational waves that can be expected
in short bursts when gravitationally collapsed systems with strong gravity, such as black
holes (escape velocity = c) and neutron stars (escape velocity ∼ 0.1c), are involved.

Any source can be characterised by an amplitude h and flux F detected at the Earth or
by a luminosity LG, which characterises the total rate of energy loss from the system. The
energy flux (in W m−2) in terms of the amplitude h is given by:

F = π

4

c3

G
f 2h2 . (1.5)

In general h is the amplitude for two polarisations h2 = h2+ + h2×. Numerically, we can
write

F = 30W m−2
(

f

1kHz

)2
h2

10−20
. (1.6)

This value represents a considerable energy flux, 3% of the solar intensity on Earth,
although such high flux densities can only be sustained in short bursts. Hence, the energy
of a gravitational wave is extremely high for a very small amplitude.

1.4 The amplitude and frequency of gravitational wave sources

As we saw in the previous section, a gravitational wave is a wave of gravity gradient which
causes relative displacements, or strains, between test masses. The detection of gravitational
waves requires the detection of small strain amplitudes. We should now consider the typical
size of such strain amplitudes. One can very crudely estimate this by scaling the amplitude
of the gravitational wave relative to the extreme amplitude at the point of coalescence of
two masses to form a black hole. At the point of black hole formation spacetime curvature
is very large. For example, the deflection of light for a light beam passing near to the
event horizon can approach a complete orbit of a black hole. At the point of generation the
dynamic curvature of space that will become the outgoing gravitational wave is unlikely to
be able to exceed the static curvature represented by the maximal deflections of light past
a black hole. The strain �L/L represented by such deflections can be estimated from the
difference in light travel time for the deflected path around the black hole (say half an orbit)
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10 Gravitational waves

and the direct path between the same points in the absence of the black hole. For a half orbit
(in Euclidean geometry) the circular path is π/2 longer than the direct path, so roughly
�L ∼ L, and the maximum possible strain amplitude is ∼ unity. But by the inverse square
law, the amplitude of the wave reduces as 1/r . (The energy density, which is proportional
to the square of the amplitude, reduces as 1/r2.) So for such a black hole source we can
give the strain amplitude at distance r as simply h ∼ rS/r . For more realistic sources only a
fraction of the total energy will participate in quadrupole motion. Thus it is more reasonable
to include an efficiency factor ε, which characterises the fraction of the total system rest
mass which can convert to gravitational waves. In this case we can write

h ∼ ε1/2 rS

r
. (1.7)

Since the Schwarzschild radius of a solar mass is a few kilometres, the maximum strain
amplitude that can be expected from any stellar mass source is numerically equal to the
reciprocal of its distance in kilometres. Because rS is linearly proportional to the mass,
gravitational wave amplitudes from very high mass sources, such as colliding blackholes
of 109 solar mass in galactic nuclei, will be of correspondingly larger amplitude. Putting
in numbers, equation (1.7) gives h ∼ 10−16 for 10 solar masses and 100% efficiency at the
galactic centre, and h ∼ 10−13 for 3 billion solar masses at 3 Gpc (towards the edge of the
visible Universe).

Clearly these maximal numbers are very small. It might seem that the supermassive
black hole sources might be much more detectable than the stellar mass source. The strain
amplitude in this case corresponds to the detection of a motion equal to the size of an atomic
nucleus on a one metre baseline, or one metre between here and Neptune. In fact the detection
of such small strains on Earth is probably impossible. This is because the frequency of the
waves from supermassive black hole sources must always be very low. The peak frequency,
or its reciprocal, the burst duration, can be estimated from the time the binary black hole
system takes to complete its final orbit before coalescence. Its value is about 10 kHz for one
solar mass, reducing inversely as the mass. Thus the peak frequency will be about 1 kHz
for the above galactic centre source, and 3 × 10−6 Hz for the distant massive black holes.
The latter frequency will be reduced towards 10−6 Hz by cosmological redshifts. At such
low frequencies, environmental effects, in particular gravity gradients associated with tides
and weather variations in the surrounding environment, create perturbations which greatly
exceed the desired signal.

There are two known ways to get around this obstacle. One is by using drag-free satellite
technology in which a spacecraft is servo controlled by thrusters to follow a central protected
freely floating test mass. In this way it is possible to create very stable free floating masses
in space. Laser interferometry between the spacecraft and the test mass can then measure
the gravitational wave strains. In this case detection does look relatively straightforward,
though expensive, since it requires several widely separated spacecraft.

For frequencies even lower than 10−6 Hz, radio pulsars can replace man-made spacecraft
in detection systems. The pulsar ideally provides a perfect monochromatic timing signal.
The radio beams from the pulsar are traversed by incoming gravitational waves. If several

http://www.cambridge.org/9780521874298
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521874298: 


