Fundamentals of Digital Communication

This textbook presents the fundamental concepts underlying the design of modern digital communication systems, which include the wireline, wireless, and storage systems that pervade our everyday lives. Using a highly accessible, lecture style exposition, this rigorous textbook first establishes a firm grounding in classical concepts of modulation and demodulation, and then builds on these to introduce advanced concepts in synchronization, noncoherent communication, channel equalization, information theory, channel coding, and wireless communication. This up-to-date textbook covers turbo and LDPC codes in sufficient detail and clarity to enable hands-on implementation and performance evaluation, as well as "just enough" information theory to enable computation of performance benchmarks to compare them against. Other unique features include the use of complex baseband representation as a unifying framework for transceiver design and implementation; wireless link design for a number of modulation formats, including spacetime communication; geometric insights into noncoherent communication; and equalization. The presentation is self-contained, and the topics are selected so as to bring the reader to the cutting edge of digital communications research and development.

Numerous examples are used to illustrate the key principles, with a view to allowing the reader to perform detailed computations and simulations based on the ideas presented in the text.

With homework problems and numerous examples for each chapter, this textbook is suitable for advanced undergraduate and graduate students of electrical and computer engineering, and can be used as the basis for a one or two semester course in digital communication. It will also be a valuable resource for practitioners in the communications industry.

Additional resources for this title, including instructor-only solutions, are available online at www.cambridge.org/9780521874144.

Upamanyu Madhow is Professor of Electrical and Computer Engineering at the University of California, Santa Barbara. He received his Ph.D. in Electrical Engineering from the University of Illinois, Urbana-Champaign, in 1990, where he later served on the faculty. A Fellow of the IEEE, he worked for several years at Telcordia before moving to academia.

Fundamentals of Digital Communication

Upamanyu Madhow University of California, Santa Barbara

 $\textcircled{\sc c}$ in this web service Cambridge University Press

www.cambridge.org

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521874144

© Cambridge University Press 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008, 2011 Second Edition 2012 Reprinted 2013

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-87414-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my family

Contents

	Preface	<i>page</i> xiii
	Acknowledgements	xvi
1	Introduction	1
1.1	Components of a digital communication system	2
1.2	Text outline	5
1.3	Further reading	6
2	Modulation	7
2.1	Preliminaries	8
2.2	Complex baseband representation	18
2.3	Spectral description of random processes	31
2.3.1	Complex envelope for passband random processes	40
2.4	Modulation degrees of freedom	41
2.5	Linear modulation	43
2.5.1	Examples of linear modulation	44
2.5.2	Spectral occupancy of linearly modulated signals	46
2.5.3	The Nyquist criterion: relating bandwidth to symbol rate	49
2.5.4	Linear modulation as a building block	54
2.6	Orthogonal and biorthogonal modulation	55
2.7	Differential modulation	57
2.8	Further reading	60
2.9	Problems	60
2.9.1	Signals and systems	60
2.9.2	Complex baseband representation	62
2.9.3	Random processes	64
2.9.4	Modulation	66
3	Demodulation	74
3.1	Gaussian basics	75
3.2	Hypothesis testing basics	88

vii

viii

3.3	Signal space concepts	94
3.4	Optimal reception in AWGN	102
3.4.1	Geometry of the ML decision rule	106
3.4.2	Soft decisions	107
3.5	Performance analysis of ML reception	109
3.5.1	Performance with binary signaling	110
3.5.2	Performance with <i>M</i> -ary signaling	114
3.6	Bit-level demodulation	127
3.6.1	Bit-level soft decisions	131
3.7	Elements of link budget analysis	133
3.8	Further reading	136
3.9	Problems	136
3.9.1	Gaussian basics	136
3.9.2	Hypothesis testing basics	138
3.9.3	Receiver design and performance analysis for the AWGN channel	140
3.9.4	Link budget analysis	149
3.9.5	Some mathematical derivations	150
л	Synchronization and noncoherent communication	153
	Receiver design requirements	155
	Parameter estimation basics	155
	Likelihood function of a signal in AWGN	162
	Parameter estimation for synchronization	162
	Noncoherent communication	105
	Composite hypothesis testing	170
	Optimal noncoherent demodulation	171
	Differential modulation and demodulation	172
	Performance of noncoherent communication	175
	Proper complex Gaussianity	175
	Performance of binary noncoherent communication	181
	Performance of <i>M</i> -ary noncoherent orthogonal signaling	185
	Performance of DPSK	187
	Block noncoherent demodulation	188
	Further reading	189
	Problems	190
	Channel equalization	199
5.1	The channel model	200
5.2	Receiver front end	201
5.3	Eye diagrams	203
5.4	Maximum likelihood sequence estimation	204
5.4.1	Alternative MLSE formulation	212
5.5	Geometric model for suboptimal equalizer design	213
5.6	Linear equalization	216

ix

5.6.1	Adaptive implementations	223
	Performance analysis	226
	Decision feedback equalization	228
	Performance analysis	230
	Performance analysis of MLSE	231
5.8.1	Union bound	232
5.8.2	Transfer function bound	237
5.9	Numerical comparison of equalization techniques	240
5.10	Further reading	242
5.11	Problems	243
5.11.1	MLSE	243
6	Information-theoretic limits and their computation	252
6.1	Capacity of AWGN channel: modeling and	
	geometry	253
6.1.1	From continuous to discrete time	256
6.1.2	Capacity of the discrete-time AWGN channel	257
6.1.3	From discrete to continuous time	259
6.1.4	Summarizing the discrete-time AWGN model	261
6.2	Shannon theory basics	263
	Entropy, mutual information, and divergence	265
6.2.2	The channel coding theorem	270
6.3	Some capacity computations	272
6.3.1	Capacity for standard constellations	272
	Parallel Gaussian channels and waterfilling	277
6.4	Optimizing the input distribution	280
6.4.1	Convex optimization	281
	Characterizing optimal input distributions	282
	Computing optimal input distributions	284
	Further reading	287
6.6	Problems	287
	Channel coding	293
	Binary convolutional codes	294
	Nonrecursive nonsystematic encoding	295
	Recursive systematic encoding	297
	Maximum likelihood decoding	298
	Performance analysis of ML decoding	303
	Performance analysis for quantized observations	309
	Turbo codes and iterative decoding	311
	The BCJR algorithm: soft-in, soft-out decoding	311
	Logarithmic BCJR algorithm	320
	Turbo constructions from convolutional codes	325
724	The BER performance of turbo codes	328

x

Cambridge University Press 978-0-521-87414-4 - Fundamentals of Digital Communication Upamanyu Madhow Frontmatter More information

	Random variables	475
	Basic probability	474 474
Annendiy A	Probability, random variables, and random processes	474
8.9	Problems	453
	Further reading	451
8.7.5	Transmit beamforming	451
8.7.4	Space-time coding	448
8.7.3	Spatial multiplexing	447
	Information-theoretic limits	443
	Space-time channel modeling	440
	Space-time communication	439
	Receiver design and Laurent's expansion	433
	Gaussian MSK	432
	Continuous phase modulation	428
	Frequency hop spread spectrum	426
	Multiuser detection for DS-CDMA systems	417
	Performance of conventional reception in CDMA systems	415
	Choice of spreading sequences	413
	The rake receiver	409
	Direct sequence spread spectrum	406
	Orthogonal frequency division multiplexing	393
	Receive diversity	390
	Diversity through coding and interleaving	387
	Fading and diversity The problem with Rayleigh fading	387
	Channel modeling	380 387
	Wireless communication	379
-		
7.7	Problems	369
	Further reading	367
	Algebraic codes	364
	Trellis coded modulation	360
7.4.1	Bit interleaved coded modulation	358
7.4	Bandwidth-efficient coded modulation	357
7.3.6	Gaussian approximation	354
7.3.5	Belief propagation	352
7.3.4	Message passing and density evolution	349
	Irregular LDPC codes	347
	Regular LDPC codes	345
7.3.1	Some terminology from coding theory	343
7.3	Low density parity check codes	342
7.2.6	Turbo weight enumeration	336
7.2.5	Extrinsic information transfer charts	329

XL

A.3	Random processes	478
A.3.1	Wide sense stationary random processes through LTI systems	478
A.3.2	Discrete-time random processes	479
A.4	Further reading	481
Appendix B	The Chernoff bound	482
Appendix C	Jensen's inequality	485
	References	488
	Index	495

Preface

The field of digital communication has evolved rapidly in the past few decades, with commercial applications proliferating in wireline communication networks (e.g., digital subscriber loop, cable, fiber optics), wireless communication (e.g., cell phones and wireless local area networks), and storage media (e.g., compact discs, hard drives). The typical undergraduate and graduate student is drawn to the field because of these applications, but is often intimidated by the mathematical background necessary to understand communication theory. A good lecturer in digital communication alleviates this fear by means of examples, and covers only the concepts that directly impact the applications being studied. The purpose of this text is to provide such a lecture style exposition to provide an accessible, yet rigorous, introduction to the subject of digital communication. This book is also suitable for self-study by practitioners who wish to brush up on fundamental concepts.

The book can be used as a basis for one course, or a two course sequence, in digital communication. The following topics are covered: complex baseband representation of signals and noise (and its relation to modern transceiver implementation); modulation (emphasizing linear modulation); demodulation (starting from detection theory basics); communication over dispersive channels, including equalization and multicarrier modulation; computation of performance benchmarks using information theory; basics of modern coding strategies (including convolutional codes and turbo-like codes); and introduction to wireless communication. The choice of material reflects my personal bias, but the concepts covered represent a large subset of the tricks of the trade. A student who masters the material here, therefore, should be well equipped for research or cutting edge development in communication systems, and should have the fundamental grounding and sophistication needed to explore topics in further detail using the resources that any researcher or designer uses, such as research papers and standards documents.

Organization

Chapter 1 provides a quick perspective on digital communication. Chapters 2 and 3 introduce modulation and demodulation, respectively, and contain

xiii

xiv

Preface

material that I view as basic to an understanding of modern digital communication systems. In addition, a review of "just enough" background in signals and systems is woven into Chapter 2, with a special focus on the complex baseband representation of passband signals and systems. The emphasis is placed on complex baseband because it is key to algorithm design and implementation in modern digital transceivers. In a graduate course, many students will have had a first exposure to digital communication, hence the instructor may choose to discuss only a few key concepts in class, and ask students to read the chapter as a review. Chapter 3 focuses on the application of detection and estimation theory to the derivation of optimal receivers for the additive white Gaussian noise (AWGN) channel, and the evaluation of performance as a function of E_b/N_0 for various modulation strategies. It also includes a glimpse of soft decisions and link budget analysis.

Once students are firmly grounded in the material of Chapters 2 and 3, the remaining chapters more or less stand on their own. Chapter 4 contains a framework for estimation of parameters such as delay and phase, starting from the derivation of the likelihood ratio of a signal in AWGN. Optimal noncoherent receivers are derived based on this framework. Chapter 5 describes the key ideas used in channel equalization, including maximum likelihood sequence estimation (MLSE) using the Viterbi algorithm, linear equalization, and decision feedback equalization. Chapter 6 contains a brief treatment of information theory, focused on the computation of performance benchmarks. This is increasingly important for the communication system designer, now that turbo-like codes provide a framework for approaching informationtheoretic limits for virtually any channel model. Chapter 7 introduces channel coding, focusing on the shortest route to conveying a working understanding of basic turbo-like constructions and iterative decoding. It includes convolutional codes, serial and parallel concatenated turbo codes, and low density parity check (LDPC) codes. Finally, Chapter 8 contains an introduction to wireless communication, and includes discussion of channel models, fading, diversity, common modulation formats used in wireless systems, such as orthogonal frequency division multiplexing, spread spectrum, and continuous phase modulation, as well as multiple antenna, or space-time, communication. Wireless communication is a richly diverse field to which entire books are devoted, hence my goal in this chapter is limited to conveying a subset of the concepts underlying link design for existing and emerging wireless systems. I hope that this exposition stimulates the reader to explore further.

How to use this book

My view of the dependencies among the material covered in the different chapters is illustrated in Figure 1, as a rough guideline for course design or self-study based on this text. Of course, an instructor using this text

Figure 1 Dependencies among various chapters. Dashed lines denote weak dependencies.

may be able to short-circuit some of these dependencies, especially the weak ones indicated by dashed lines. For example, much of the material in Chapter 7 (coding) and Chapter 8 (wireless communication) is accessible without detailed coverage of Chapter 6 (information theory).

In terms of my personal experience with teaching the material at the University of California, Santa Barbara (UCSB), in the introductory graduate course on digital communication, I cover the material in Chapters 2, 3, 4, and 5 in one quarter, typically spending little time on the material in Chapter 2 in class, since most students have seen some version of this material. Sometimes, depending on the pace of the class, I am also able to provide a glimpse of Chapters 6 and 7. In a follow-up graduate course, I cover the material in Chapters 6, 7, and 8. The pace is usually quite rapid in a quarter system, and the same material could easily take up two semesters when taught in more depth, and at a more measured pace.

An alternative course structure that is quite appealing, especially in terms of systematic coverage of fundamentals, is to cover Chapters 2, 3, 6, and part of 7 in an introductory graduate course, and to cover the remaining topics in a follow-up course.

Acknowledgements

This book is an outgrowth of graduate and senior level digital communication courses that I have taught at the University of California, Santa Barbara (UCSB) and the University of Illinois at Urbana-Champaign (UIUC). I would, therefore, like to thank students over the past decade who have been guinea pigs for my various attempts at course design at both of these institutions. This book is influenced heavily by my research in communication systems, and I would like to thank the funding agencies who have supported this work. These include the National Science Foundation, the Office of Naval Research, the Army Research Office, Motorola, Inc., and the University of California Industry-University Cooperative Research Program.

A number of graduate students have contributed to this book by generating numerical results and plots, providing constructive feedback on draft chapters, and helping write solutions to problems. Specifically, I would like to thank the following members and alumni of my research group: Bharath Ananthasubramaniam, Noah Jacobsen, Raghu Mudumbai, Sandeep Ponnuru, Jaspreet Singh, Sumit Singh, Eric Torkildson, and Sriram Venkateswaran. I would also like to thank Ibrahim El-Khalil, Jim Kleban, Michael Sander, and Sheng-Luen Wei for pointing out typos. I would also like to acknowledge (in order of graduation) some former students, whose doctoral research influenced portions of this textbook: Dilip Warrier, Eugene Visotsky, Rong-Rong Chen, Gwen Barriac, and Noah Jacobsen.

I would also like to take this opportunity to acknowledge the supportive and stimulating environment at the University of Illinois at Urbana-Champaign (UIUC), which I experienced both as a graduate student and as a tenure-track faculty. Faculty at UIUC who greatly enhanced my graduate student experience include my thesis advisor, Professor Mike Pursley (now at Clemson University), Professor Bruce Hajek, Professor Vince Poor (now at Princeton University), and Professor Dilip Sarwate. Moreover, as a faculty at UIUC, I benefited from technical interactions with a number of other faculty in the communications area, including Professor Dick Blahut, Professor Ralf Koetter, Professor Muriel Medard, and Professor Andy Singer. Among my xvii

Acknowledgements

UCSB colleagues, I would like to thank Professor Ken Rose for his helpful feedback on Chapter 6, and I would like to acknowledge my collaboration with Professor Mark Rodwell in the electronics area, which has educated me on a number of implementation considerations in communication systems. Past research collaborators who have influenced this book indirectly include Professor Mike Honig and Professor Sergio Verdu.

I would like to thank Dr. Phil Meyler at Cambridge University Press for pushing me to commit to writing this textbook. I also thank Professor Venu Veeravalli at UIUC and Professor Prakash Narayan at the University of Maryland, College Park, for their support and helpful feedback regarding the book proposal that I originally sent to Cambridge University Press.

Finally, I would like to thank my family for always making life unpredictable and enjoyable at home, regardless of the number of professional commitments I pile on myself.