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1 Introduction

1.1 General

Trends have been seen in recent years in which engineers, physicists, and applied
mathematicians perform research with interdisciplinary interactions. Vectors
and tensors are the common language used in these interactions. Continuum
mechanics combines mathematical operations and physical processes in contin-
uous media for various subjects of engineering, physics, and applied mathematics.
This is contrary to the notion that continuum mechanics is predominantly solid
mechanics, as conceived in the past.

Thus our objective is to explore how the theory of continuum mechanics can
combine deformations of solids, flows of inviscid and viscous fluids, electromag-
netic waves, and motions of astrophysical objects in a single book. Common
to all of these physical phenomena are the concepts of mass, velocity, acceler-
ation, stress, momentum, and energy. We shall examine them as conceived in
engineering disciplines and in spacetime of our universe, thus placing them all
in proper perspective. Indeed, it shall be shown that the conservation forms of
the electromagnetic continuum and Einstein’s relativistic equations are similar
to the conservation form of the Navier–Stokes system of equations such that the
numerical solution schemes are similar for both cases, referring to a process of
continuum mechanics dealing with speed of sound, speed of light, or both, in a
similar fashion.

Newton’s theory prevails today and will continue to govern our daily lives
on earth. As the velocity of a particle increases, reaching nearly the speed of
light, however, the effect of gravitation becomes significant and Newton’s law
must be replaced with Einstein’s relativity theory. The word “continuum” implies
“continuous media.” Therefore, as long as mass, velocity, acceleration, stress,
momentum, and energy are continuous functions in continuous media, our task
of describing the behavior of these functions will be the same on earth and in
the universe except as affected by relativity in spacetime and gravitation. Thus in
this book our task is to become aware of both analogies and differences between
them.

In continuum mechanics we are concerned with a macroscopic view, thus
excluding the microscopic treatments such as in quantum mechanics and rar-
efied gases. A concept of fundamental importance here is that of the mean free
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4 Introduction

path, which can be defined as the average distance a molecule travels between
successive collisions with other molecules. The ratio of the mean free path �

to the characteristic length S of the physical boundaries of interest, called the
Knudsen number Kn, may be used to determine the dividing line between the
macroscopic and microscopic models:

Kn = �

S
< 1, macroscopic, (1.1.1)

Kn = �

S
≥ 1, microscopic, (1.1.2)

where � ∼= 10−7 cm for solids and liquids and � ∼= 10−6 cm for gases. Thus the
Knudsen number is smaller than 1 for continuum mechanics as the characteristic
length is larger than the mean free path. This is the case for solid mechanics, fluid
dynamics, electromagnetic continuum, and relativistic continuum. It is known
as the macroscopic problem as opposed to the microscopic problem such as in
quantum mechanics (small characteristic length, S ∼= 10−33cm, large Knudsen
number) or in rarefied gases (large mean free path, � > 10−6cm, large Knudsen
number). Thus, in our study in continuum mechanics, rarefied gases and quantum
mechanics are excluded.

For the macroscopic model, mass m is defined as a continuous function of
volume �, such that density � is determined by the relation

� = dm

d�
, (1.1.3)

whereas in the microscopic model, we define

� =
N∑

i=1

�i =
N∑

i=1

mi ni , (1.1.4)

where ni denotes the number density of molecules per unit volume of a gas
composed of a chemical species i.

The unified approach to the study of the global behavior of materials consists
of, first, a thorough study of the basic principles common to all media and, second,
a clear demonstration of the properties specific to the medium under considera-
tion. The basic principles include the conservation of mass, the conservation of
linear and angular momentum, the conservation of energy, and the principle of
entropy. The underlying assumption of the unified theory is that these principles
are valid for all materials irrespective of their constitution. Thus, to account for
the nature of different materials – the various types of solids, liquids, or gases –
we require additional equations, known as the equations of state, to describe the
basic characteristics of the body and its response to the external agent under
consideration.

This book is divided into two parts: Part I, Basic Topics, and Part II, Special
Topics. We begin with the basic operations of vectors, matrices, Cartesian tensors,
and domain and boundary surface integrals in Chap. 1, followed by kinematics,

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87406-9 - General Continuum Mechanics
T. J. Chung
Excerpt
More information

http://www.cambridge.org/0521874068
http://www.cambridge.org
http://www.cambridge.org


1.2 Vectors and Tensors in Cartesian Coordinates 5

kinetics, linear elasticity, and Newtonian fluid mechanics in subsequent chapters
of Part I. Curvilinear continuum, nonlinear continuum, electromagnetic contin-
uum, and differential geometry continuum are included in Part II.

1.2 Vectors and Tensors in Cartesian Coordinates

A vector is determined in a given reference frame by a set of components. If a
new coordinate system is introduced, the same vector is determined by another
set of components, and these new components are related, in a definite way, to
the old ones. The law of transformation of components of a vector is the essence
of the vector representation.

Tensors are founded on a notion similar to that of vectors, but are much
broader in conception. Tensor analysis is concerned with the study of abstract
objects, called tensors, whose properties are independent of or invariant with
the reference frames used to describe an object. A tensor is represented in a
particular reference frame by a set of functions, termed its components, just as
a vector is determined by a set of components. Tensor analysis deals with enti-
ties and properties that are independent of the choice of reference frames. Thus
it forms an ideal tool for the study of natural laws because tensor equations
are invariant with respect to a given category of coordinate transformations.
Tensors are capable of delineating a variety of objects, ranging from scalars to
multiple components of matter encountered in various physical phenomena. To
discuss this subject further, however, it is necessary to introduce some notation
and rules that will be applied to tensors and also to other topics in continuum
mechanics.

Index Notation
A vector is denoted by a boldfaced letter symbol. A vector may be written
in terms of its components by use of indices. For example, consider a vector
in a right-handed rectangular three-dimensional Cartesian coordinate system
(Fig. 1.2.1):

A = A1i1 + A2i2 + A3i3, (1.2.1a)

where each ii denotes one of the unit vectors and the indices i = 1, 2, 3 have a
range of 3. This expression may be written as

A =
3∑

i=1

Ai ii , (1.2.1b)

where Ai indicates the components of the vector A at point p. Henceforth we
shall dispense with the summation sign and write Eq. (1.2.1) in the form

A = Ai ii (i = 1, 2, 3) . (1.2.1c)
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6 Introduction

x2

x1

i3

i2i1

x3

A1i1

A2i2

A3i3

p

A Figure 1.2.1. Three-dimensional represen-
tation of the vector A and its components.

Note that repeated indices (sometimes called dummy indices) imply summing
over the range of the index. For example, let us consider

x ′
i = ai j x j = ai1x1 + ai2x2 + ai3x3 (i, j = 1, 2, 3) . (1.2.2a)

Here, j is the repeated index and i must change independently of x j to give x ′
1,

x ′
2, x ′

3, which indicates that Eq. (1.2.2a) represents three equations. The index i,
which is not repeated here, is called a free index, thus allowing the free index
i in (1.2.2a) to assume i = 1, 2, 3 one at a time and to obtain a total of three
equations:

x ′
1 = a11x1 + a12x2 + a13x3,

x ′
2 = a21x1 + a22x2 + a23x3, (1.2.2b)

x ′
3 = a31x1 + a32x2 + a33x3.

Vector Multiplication
The Kronecker delta is defined as

�i j =
{

1 if i = j
0 if i �= j

. (1.2.3a)

This represents the 3 × 3 unit matrix,

�i j =
⎡
⎣�11 �12 �13

�21 �22 �23

�31 �32 �33

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = [I], (1.2.3b)

where [I] is the unity matrix.
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1.2 Vectors and Tensors in Cartesian Coordinates 7

The permutation symbol is given by

�i jk =
⎧⎨
⎩

1 for even permutations of i jk (123, 231, 312), clockwise rotation
−1 for odd permutations of i jk (132, 213, 321), counterclockwise rotation.

0 for two or more equal indices (112, 111, etc.)

(1.2.4)

Note that the permutation symbol has an array (9 × 3) of 27 terms, with only 6
terms being nonzero and 21 terms zero.

A dot product of any two vectors in index notation reads

A · B = Ai ii · B j i j = Ai B j �i j = Ai Bi = A j B j = �. (1.2.5)

Because of the orthogonal or orthonormal coordinate system, a dot product of
the unit vectors produces a Kronecker delta:

ii · i j = �i j . (1.2.6)

The role of the Kronecker delta is to interchange the index of a component of
a vector, as demonstrated in Eq. (1.2.5). In this process, as a consequence of the
Kronecker delta, only the nonzero terms are allowed to remain, the zero terms
being removed. Furthermore, the dot product of two vectors results in a scalar
�, which does not have a free index.

On the other hand, a cross product of any two vectors in index notation reads

A × B = Ai ii × B j i j

= Ai B j ii × i j = A1 B1i1 × i1 + A1 B2i1 × i2 + A2 B1i2 × i1 + · · · +
= 0 + A1 B2i3 − A2 B1i3

+ · · · + (27 terms, 21 of them zero, only 6 terms nonzero)

= Ai B j �i jk ik

= (A2 B3 − A3 B2)i1 + (A3 B1 − A1 B3)i2 + (A1 B2 − A2 B1)i3, (1.2.7)

where the cross product of unit vectors produces a permutation symbol �i jk such
that

ii × i j = �i jk ik . (1.2.8)

It is interesting to note that the result obtained in Eq. (1.2.7) can be written as

A × B =
∣∣∣∣∣∣
i1 i2 i3
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
= (A2 B3 − A3 B2)i1 − (A1 B3 − A3 B1)i2 + (A1 B2 − A2 B1)i3, (1.2.9)
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8 Introduction
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q

q

q

r

x2 cos q

x1 cos q

x1 sin q

x2 sin q
i'2

i1

i'1
i2

Figure 1.2.2. Coordinate transformation rotation between xi and x ′
i coordinates by an angle �.

indicating that the application of a permutation symbol results in the determinant
of a 3 × 3 matrix array. Notice that Eq. (1.2.7) indicates a logical sequence of
derivation whereas Eq. (1.2.9) is merely a definition resulting from Eq. (1.2.7).

It can easily be shown that A · B = B · A (commutative law) and A × B =
−B × A. The reader is encouraged to prove these relations by using the index
notation as an exercise.

Tensors
The quantities that appear in the foregoing paragraphs are identified as tensors
because they satisfy the basic properties set forth at the beginning of this section.
To provide a specific example, let us examine Eqs. (1.2.2b). Let r be a position
vector in Fig. 1.2.2:

r = xi ii (i = 1, 2, 3), (1.2.10a)

where the standard right-hand rule is used. If the old coordinates xi are rotated
by an angle � about the x3 axis to a set of new coordinates x ′

i , then the position
vector can be represented by

r = x ′
i i

′
i (i = 1, 2, 3). (1.2.10b)

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87406-9 - General Continuum Mechanics
T. J. Chung
Excerpt
More information

http://www.cambridge.org/0521874068
http://www.cambridge.org
http://www.cambridge.org


1.2 Vectors and Tensors in Cartesian Coordinates 9
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x'3
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A'i = aijAj
θ11 = cos−1a11
θ12 = cos−1a12
etc.

θ12

Figure 1.2.3. Coordinate transformations: (a) representation of a vector A, (b) representation of a
vector A in two sets of right-handed Cartesian axes with different orientations.

Figure 1.2.2 shows that the old coordinates xi are rotated about the x3 axis coun-
terclockwise by an angle � to a set of new coordinates x ′

i . We can calculate the new
coordinates in terms of the old coordinates by adding and subtracting coordinate
lengths,

x ′
1 = (cos �)x1 + (sin �)x2,

x ′
2 = −(sin �)x1 + (cos �)x2, (1.2.11)

x ′
3 = x3.

These relationships may be obtained in a more general and systematic manner.
To this end, we write Eqs. (1.2.11) in a form given by Eq. (1.2.2a) and as shown
in Fig. 1.2.3:

x ′
i = ai j x j (i, j = 1, 2, 3), (1.2.12)

with

a11 = cos θ11 = cos θ,

a12 = cos θ12 = cos
(�

2
− θ

)
= sin θ,

a13 = cos
�

2
= 0,

a21 = cos θ21 = cos
(�

2
+ θ

)
= −sin θ,
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10 Introduction

a22 = cos θ22 = cos θ, (1.2.13)

a23 = cos
�

2
= 0,

a31 = cos θ31 = cos
�

2
= 0,

a32 = cos θ32 = cos
�

2
= 0,

a33 = cos θ33 = cos 0 = 1,

where the subscripts on the rotation angle �ab imply that an angle is measured
from the new axis a (x ′

i axis) to the old axis b (x j axis).
In matrix notation, using the results of Eqs. (1.2.13), we write Eq. (1.2.12) as⎡

⎣ x ′
1

x ′
2

x ′
3

⎤
⎦ =

⎡
⎣ cos θ sin θ 0

−sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦ . (1.2.14)

This is the same as in Eqs. (1.2.11), which were obtained from a geometrical
deduction. The approach given in Eqs. (1.2.13) is much more efficient, particularly
when rotations about various axes are performed many times consecutively, as
shown in Example 1.2.1. Note that the old coordinates x j are transformed into
the new coordinates x ′

i by means of the quantities called the transformation
matrix ai j , whose components are the cosines of angles measured from the new
coordinates x ′

i to the old coordinates x j . We have seen that the position vector r
remains invariant through coordinate transformations. The quantities x ′

i , x j , and
ai j are the abstract objects whose properties remain invariant with the coordinate
transformations. Therefore they are all tensors, as defined earlier.

Similarly, we may consider a vector A = Ai ii oriented at �1, �2, and �3 from the
respective rectangular Cartesian coordinate axes [Fig. 1.2.3(a)] so that

Ai = Ani (i = 1, 2, 3),

where

A =
√

A2
1 + A2

2 + A2
3,

n1 = A1

A
n2 = A2

A
n3 = A3

A
.

Here ni (n1, n2, n3) are the direction cosines whose properties must satisfy

n · n = ni ni = n2
1 + n2

2 + n2
3 = 1.

Note also in Eq. (1.2.12),

n(1) · n(1) = a2
11 + a2

12 + a2
13 = cos2 � + sin2 � = 1,

n(2) · n(2) = a2
21 + a2

22 + a2
23 = (−sin �)2 + cos2 � = 1,

n(3) · n(3) = a2
31 + a2

32 + a2
33 = 1.
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1.2 Vectors and Tensors in Cartesian Coordinates 11

Proceeding in a similar manner, as shown in Fig. 1.2.3(b), we may write

A′
i = ai j A j ,

where A′
i refers to a set of new coordinates so that the vector A is now measured

in terms of the new coordinates and ai j acts as a set of direction cosines, with i
and j indicating the new and old coordinates, respectively.

Again, the vector components A′
i , A j as well as ai j , are tensors. They are

abstract objects invariant with the frame of reference. Once a quantity is deter-
mined to be a tensor, then the number of free indices indicates the order of the
tensor. Thus we define, in general, for any abstract object B,

B = zero-order tensor,
Bi = first-order tensor,

Bi j = second-order tensor,
Bi jk = third-order tensor,
Bi jkl = fourth order tensor,

...
etc.

Tensors using the Cartesian coordinates are called “Cartesian tensors,” whereas
those based on the curvilinear coordinates are called “curvilinear tensors,” which
will be introduced in Chap. 6. Note that the second-order tensor refers to the
3 × 3 matrix as identified such as in Eqs. (1.2.3b) and (1.2.14).

EXAMPLE 1.2.1. Consider a set of new axes x ′
i as obtained by rotating the old axes xi

through a 60◦ angle counterclockwise about the x2 axis. What are the components
of a vector A in the new coordinates if Ai in the old coordinates are (2, 1, 3)?

Solution. The direction cosines ai j between the old and new axes are

ai j =
⎡
⎣ cos 60◦ 0 −sin 60◦

0 1 0
sin 60◦ 0 cos 60◦

⎤
⎦ .

From the transformation law,

A′
i = ai j A j ,

we obtain

A′
1 = a11 A1 + a12 A2 + a13 A3 = 2 − 3

√
3

2
,

A′
2 = a21 A1 + a22 A2 + a23 A3 = 1,

A′
3 = a31 A1 + a32 A2 + a33 A3 = 2

√
3 + 3
2

,
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