Index

adder
- carry propagate 25
- carry save 25
- floating point 28–29
- Kogge–Stone 23
alpha microprocessor 18
arithmetic module 22
ASIC methodology
- design costs 141
- example 4
- in consumer market 21
- total design starts 141
average selling prices (ASP) 21
bipolar logic 2
bubble pushing, see unate transform
caracterization
- data pin setup falling 59
domino cell
- falling delay 53
- rising delay 52–53
- transition characterization 54
domino register
- delay measurement 64
- hold 65
- scan output delay 64
- setup 65
- hold falling 58
- input pin capacitance 54
- maximum data pin crosstalk 61–62
- minimum pulse width high and low 59
- minimum pulse width high overlap 55–57
- setup rising with respect to clock falling 54–55
- simultaneous crosstalk and charge sharing 62
- charge sharing, checking 62
- clock
- creating four phases
- hard timing edge 75
- skew 14
- soft timing edge 15
- two-phase for domino 12–14
CMOS
- 45 nm process 130
- history of 1–4
- manufacturing capacity mix 129
- power dissipation 2
- process trends 129
- scaling 19
- static NAND gate 1
coupling capacitance 51
crosstalk
- fixing 105
- maximum voltage spike check 105
custom design
- benefits 4–5
- in microprocessor 21
- optimizing across logic and circuit design 29
design rule check (DRC) 105
domino
- ASIC flow
- allowing binate logic 138–139
- applications 127–128
- benefits 70
- challenges 70
- clock tree synthesis 104
- crosstalk fixing by router 104
- design guidelines 91–92
- disruptive technology 141
- dynamic simulations 105
- formal verification 103
- initial placement 98
- non-footed domino 134, 140–141
- overview 72–73
- physical design 103
- portability across different EDA tools 106
- pulse-based analysis 106
- RTL guidelines 95
- silicon results 126
- standard tool-based 71
- synthesis constraints 92–95
- synthesizing other dynamic logic families 132
- uses of domino design 16
- variables 87–91
domino (cont.)

DSP chip
- results 119
- system advantages in using domino logic 119
- advantages 15
- AND gate 5
- avoiding explicit flip-flops with 14
- charge sharing 49–50
- clock 6
- clocking techniques 12–15
- compound domino 134
- crosstalk noise 50–51
- data-driven 134
- disadvantages 15–16
- evaluate phase 6
- evaluate transistors 49
- factors to consider before using 35
- full timing model 66–67
- future scalability 128
- implementing binate functions with 9–11
- improving charge-sharing tolerance 63
- improving precharge delay 63
- is dynamic attribute 66
- keeper transistor 49
- lack of contention 8
- low frequency and voltage operation 117
- maximum operating frequency 131
- maximum precharge delay 49
- non-footed domino speed advantage 132
- precharge check 63
- precharge delay 49, 52–54
- precharge phase 6
- precharge transistors 49
- schematic capture 106–107
- self-resetting 136
- speed advantage 6–8
- uninverting nature 8
- Zipper/NORA 134, 135

synthesis, see domino ASIC flow

dual output domino
- advantages 110
- disadvantages 110
- example circuit 109

EDA history 4

fan-out of four (FO4) 20

flip-flop
- D-to-Q delay 41
- hold time in 14, 65
- master–slave 41
- pulse 41
- setup and hold measurement 44
- Frank Wanlass 1

glitching 9

high-performance microarchitecture 22–29
- hold time
- definition 14
- of pulse flip-flops 41
- hot cell 30

integer execution unit chip
- chip description 115–116
- clock generation 116
- crosstalk failure 113
- crosstalk simulation 112
- data flow 108
- datapath 111
- design flow 108
- domino cells 111–112
- domino inverter P/N sizing 115
- domino keeper sizing 115
- dynamic cell P/N sizing 114
- overview 108
- physical design 116
- precharge transistor sizing 115
- silicon results 116–119
- test methodology 116
- transistor sizing simulation 112

Intel
- 4004 2
- 8088/8086 3
- domino synthesis paper 124–125
- low voltage swing domino 136

layout versus schematic (LVS) 105

logic
- adder and shifter module 29–30
- predictive comparator following addition 26
- self-loading effect 6
- speculative operation 27

logic synthesis
- description 4
- of complex datapath 25

memory
- 6T cell 33
- decoder 34
- interface to domino logic 35
- layout requirements 33–34
- sense amplifiers 34
- SRAM example 31
- timing models 31
- using in ASIC design 31

microarchitecture definition 22

microprocessor
- performance predictions 18
- speed evolution 18
Index

minimum pulse width high overlap
description 104
iterative fixing 104
violation report 104
multiplier 24–25

NMOS
NAND gate 2
speed disadvantage 3

pass transistor logic
in standard cells 40
XOR 40

phase assignment
challenges 76
clock width high check 83
clock width low check 84
definition 75
detailed description 101–103
domino input ports 82
fan-in phase differences 80–81
maximum negative slack 101
mixing static and domino cell 86
multi cycle paths 84–85
phase skip limit 101
phase skipping 78–79
with slack 101
with static cells 100
precharge failure 83
requirements 77
simplification of latched outputs 90
static input port 81–82
static output port 83
unbalanced 79–80
using mixed registers 100
using skewed clocks 100
phase locked loop 130–131
pin under test 52
pipelining
deeply in microprocessors 19–20
limits of 21

process, using worst-case corner in design 120

radio frequency (RF) 11

setup time 14
standard cell
domino logic compatibility 66
domino logic well 66
drive strengths 46–48
layout 42–43
library performance versus size 46
static cell library 127
timing assumption 44
track 45
typical library size 45
switching point 8
timing model, pseudo-static 72
timing verification 105
transistor sizing
optimal P/N ratio 38–39
scaling 37–38

unate transform
binate functions 75
entire domino library 74
incremental optimization 97
output phase optimization 96
overview 73–75
removing trapped inverters 74
static port specification 97

Viterbi decode chip
description 121–122
design flow 122–123
silicon results 124
voltage-controlled oscillator
back-to-back inverter 131
LC tank 131