Solid State Materials Chemistry

This book explores the fascinating world of functional materials from the perspective of those who are tasked with inventing them, solid state chemists. Written in a clear and accessible style, this book provides a modern-day treatment of solid state materials chemistry for graduate and advanced undergraduate level courses. With over 330 problems and 400 original figures, this essential reference covers a wide range of materials in a holistic manner, including inorganic and organic, crystalline and amorphous, bulk and nanocrystals.

The introductory chapters cover topics such as crystal structures, defects, diffusion in solids, chemical bonding, and electronic band structure. Later chapters focus on important classes of functional materials including pigments, phosphors, dielectric materials, magnets, metals, semiconductors, superconductors, nonlinear optical materials, battery materials, zeolites, metal–organic framework materials, and glasses. The technological applications and synthesis methods used to prepare the materials that drive modern society are highlighted throughout.

Patrick M. Woodward is a Professor in the Department of Chemistry and Biochemistry and holds a courtesy appointment in the Department of Physics at Ohio State University. He is best known for his studies of the structures and properties of perovskite-related materials. He has served as chair of the Solid State Chemistry Gordon Conference (2018), Associate Editor of the Journal of Solid State Chemistry (2006–2011), and Vice President of the Neutron Scattering Society of America (2014–2018). He is co-author of the widely used general chemistry textbook, Chemistry: The Central Science (Pearson Education Limited, 2018). Patrick is a recipient of an NSF Career Award (2001), a Sloan Research Fellowship (2004), a Leverhulme Visiting Professorship (2017), and is a Fellow of the American Chemical Society (2020).

Pavel Karen is a Professor in the Department of Chemistry at the University of Oslo. His interests include inorganic reaction chemistry, solid state synthesis methods, crystallography, phase relations and thermodynamics, and point-defect chemistry; all components of his teaching portfolio. He is interested in the relationship between structure and properties of less common inorganic solids, such as mixed-valence oxides. Crystal structures are studied by X-ray and neutron diffraction, local structures by Mössbauer spectroscopy, and valence-mixing by calorimetry. He is co-author of the chapter Phase Diagrams and Thermodynamic Properties in the Handbook on the Physics and Chemistry of the Rare Earths, Volume 30, High-Temperature Superconductors (Elsevier, 2000). Pavel is a member of the American Chemical Society, the American Crystallographic Association, and of the International
Union of Pure and Applied Chemistry’s Division II and the Interdivisional Committee on Terminology, Nomenclature and Symbols.

John S. O. Evans is a Chemistry Professor at Durham University where he served as Head of Chemistry from 2009 to 2014. His research interests are in the synthesis and properties of (mainly) inorganic materials, their structural chemistry, and their real-world applications. In recent years he has worked, inter alia, on negative thermal expansion, symmetry properties of phase transitions, new oxide-chalcogenides and energy-related materials. He has a long-standing interest in developing powder diffraction methods and is co-author of *Rietveld Refinement: Practical Powder Diffraction Pattern Analysis using TOPAS* (De Gruyter, 2019). John was awarded the 1997 Meldola prize of the Royal Society of Chemistry, and was co-awarded the 2015 Royal Society of Chemistry Teamwork in Innovation Award for work with industry.

Thomas Vogt is the Educational Foundation Endowed Chair in the Department of Chemistry and Biochemistry, Director of the NanoCenter and adjunct Professor in the Department of Philosophy at the University of South Carolina. His work focuses on establishing structure–property relationships of solid state materials using X-ray and neutron scattering and electron microscopy. He is recognized as Fellow of the American Physical Society, the American Association for the Advancement of Science, the Institute of Advanced Study at Durham University, and the Neutron Scattering Society of America. Thomas received the Carolina Trustee Professorship of the Board of Trustees in 2018 as well as the University of South Carolina’s Educational Foundation Award for Research in Science, Mathematics, and Engineering in 2019.
Solid State Materials Chemistry

Patrick M. Woodward
Ohio State University

Pavel Karen
Universitetet i Oslo

John S. O. Evans
Durham University

Thomas Vogt
University of South Carolina
Contents

Preface ... xvii
Acknowledgments .. xix

1 Structures of Crystalline Materials

1.1 Symmetry .. 1
1.1.1 Translational Symmetry 2
1.1.2 Rotational Symmetry 3
1.1.3 Crystallographic Point Groups and Crystal Systems .. 5
1.1.4 Bravais Lattices 5
1.1.5 Introduction to Space Groups 8
1.1.6 Symmetry Elements That Combine Rotation and Translation .. 9
1.1.7 Space-Group Symbols 11
1.1.8 Description of a Crystal Structure 12
1.2 Databases .. 13
1.3 Composition ... 14
1.3.1 Coordination, Stoichiometry, and Connectivity 15
1.3.2 The Generalized 8−N Rule 17
1.4 Structural Principles 18
1.4.1 Packing of Spheres 19
1.4.2 Filling Holes .. 22
1.4.3 Network Structures 28
1.4.4 Polyhedral Structures 32
1.5 Structures of Selected Materials 38
1.5.1 The Spinel Structure 38
1.5.2 The Garnet Structure 39
1.5.3 Perovskite Structures 40
1.5.4 Silicates ... 44
1.5.5 Zeolites ... 46
1.5.6 Zintl Phases ... 47
1.6 Problems ... 48
1.7 Further Reading ... 51
1.8 References .. 51
2 Defects and More Complex Structures

2.1 Point Defects in Crystalline Elemental Solids 54
2.2 Intrinsic Point Defects in Compounds 55
2.3 Thermodynamics of Vacancy Formation 58
2.4 Extrinsic Defects 61
2.5 Solid Solutions and Vegard’s Law 63
2.6 Kröger–Vink Notation 65
2.7 Line Defects in Metals 66
2.7.1 Edge Dislocations 66
2.7.2 Screw Dislocations 66
2.8 Planar Defects in Materials 67
2.8.1 Stacking Faults 67
2.8.2 Twinning 68
2.8.3 Antiphase Boundaries 72
2.8.4 Crystallographic Shear Structures 74
2.9 Gross Nonstoichiometry and Defect Ordering 75
2.10 Incommensurate Structures 78
2.11 Infinitely Adaptive Structures 80
2.12 Problems 81
2.13 Further Reading 85
2.14 References 85

3 Defect Chemistry and Nonstoichiometry

3.1 Narrow Nonstoichiometry in Oxides 87
3.1.1 Point Defects in a Pure Stoichiometric Oxide 87
3.1.2 Point Defects upon Oxidation/Reduction of the Stoichiometric Oxide 88
3.1.3 Equilibrium Equations for Oxidative and Reductive Nonstoichiometry 89
3.1.4 Defect Equilibria for Schottky-Type Redox Compensation 90
3.1.5 Acceptor-Doped Oxides 93
3.1.6 Donor-Doped Oxides 94
3.1.7 Solid Solubility of Dopants 94
3.1.8 Cautionary Note on Defect Models in Pure Oxides 96
3.2 Wide Nonstoichiometry in Oxides 98
3.3 Point Defects and Diffusion 99
3.3.1 Point-Defect Movements 101
3.3.2 Random Hopping 103
3.3.3 Hopping Under a Driving Force 104
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3 Orbital Overlap and Symmetry</td>
<td>174</td>
</tr>
<tr>
<td>5.3.4 Combination of σ and π Bonding: O_2</td>
<td>175</td>
</tr>
<tr>
<td>5.3.5 Symmetry-Adapted Linear Combinations (SALCs)</td>
<td>177</td>
</tr>
<tr>
<td>5.3.6 Simple Polyatomic Molecules: BeH_2 and CH_4</td>
<td>179</td>
</tr>
<tr>
<td>5.3.7 Conjugated π Bonding: C_6H_6</td>
<td>181</td>
</tr>
<tr>
<td>5.3.8 Transition-Metal Complexes: $[\text{CrCl}_6]^{3-}$ and $[\text{CoCl}_4]^{2-}$</td>
<td>183</td>
</tr>
<tr>
<td>5.3.9 High- and Low-Spin Configurations</td>
<td>186</td>
</tr>
<tr>
<td>5.3.10 Jahn–Teller Distortions</td>
<td>188</td>
</tr>
<tr>
<td>5.4 Bond Valences</td>
<td>190</td>
</tr>
<tr>
<td>5.5 Problems</td>
<td>195</td>
</tr>
<tr>
<td>5.6 Further Reading</td>
<td>198</td>
</tr>
<tr>
<td>5.7 References</td>
<td>199</td>
</tr>
</tbody>
</table>

6 Electronic Band Structure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 The Band Structure of a Hydrogen-Atom Chain</td>
<td>200</td>
</tr>
<tr>
<td>6.1.1 The Electronic Structures of Cyclic H_N Molecules</td>
<td>201</td>
</tr>
<tr>
<td>6.1.2 Translational Symmetry and the Bloch Function</td>
<td>202</td>
</tr>
<tr>
<td>6.1.3 The Quantum Number k</td>
<td>203</td>
</tr>
<tr>
<td>6.1.4 Visualizing Crystal Orbitals</td>
<td>204</td>
</tr>
<tr>
<td>6.1.5 Band-Structure Diagrams</td>
<td>207</td>
</tr>
<tr>
<td>6.1.6 Density-of-States (DOS) Plots</td>
<td>209</td>
</tr>
<tr>
<td>6.2 The Band Structure of a Chain of H_2 Molecules</td>
<td>210</td>
</tr>
<tr>
<td>6.3 Electrical and Optical Properties</td>
<td>213</td>
</tr>
<tr>
<td>6.3.1 Metals, Semiconductors, and Insulators</td>
<td>213</td>
</tr>
<tr>
<td>6.3.2 Direct- versus Indirect-Gap Semiconductors</td>
<td>214</td>
</tr>
<tr>
<td>6.4 Representing Band Structures in Higher Dimensions</td>
<td>215</td>
</tr>
<tr>
<td>6.4.1 Crystal Orbitals in Two Dimensions</td>
<td>215</td>
</tr>
<tr>
<td>6.4.2 Crystal Orbitals in Three Dimensions</td>
<td>219</td>
</tr>
<tr>
<td>6.5 Band Structures of Two-Dimensional Materials</td>
<td>220</td>
</tr>
<tr>
<td>6.5.1 Graphene</td>
<td>221</td>
</tr>
<tr>
<td>6.5.2 CuO_2^{2-} Square Lattice</td>
<td>223</td>
</tr>
<tr>
<td>6.6 Band Structures of Three-Dimensional Materials</td>
<td>227</td>
</tr>
<tr>
<td>6.6.1 α-Polonium</td>
<td>227</td>
</tr>
<tr>
<td>6.6.2 Diamond</td>
<td>228</td>
</tr>
<tr>
<td>6.6.3 Elemental Semiconductors</td>
<td>230</td>
</tr>
<tr>
<td>6.6.4 Rhenium Trioxide</td>
<td>231</td>
</tr>
<tr>
<td>6.6.5 Perovskites</td>
<td>233</td>
</tr>
<tr>
<td>6.7 Problems</td>
<td>237</td>
</tr>
<tr>
<td>6.8 Further Reading</td>
<td>241</td>
</tr>
<tr>
<td>6.9 References</td>
<td>242</td>
</tr>
</tbody>
</table>
7 Optical Materials

7.1 Light, Color, and Electronic Excitations 243
7.2 Pigments, Dyes, and Gemstones 245
7.3 Transitions between d Orbitals (d-to-d Excitations) 246
 7.3.1 Ligand- and Crystal-Field Theory 246
 7.3.2 Absorption Spectra and Spectroscopic Terms 248
 7.3.3 Correlation Diagrams 252
 7.3.4 Selection Rules and Absorption Intensity 255
7.4 Charge-Transfer Excitations 258
 7.4.1 Ligand-to-Metal Charge Transfer 259
 7.4.2 Metal-to-Metal Charge Transfer 260
7.5 Compound Semiconductors 261
 7.5.1 Optical Absorbance, Band Gap, and Color 262
 7.5.2 Electronegativity, Orbital Overlap, and Band Gap 263
7.6 Conjugated Organic Molecules 265
7.7 Luminescence 267
 7.7.1 Photoluminescence 268
 7.8.1 Components of a Phosphor 268
 7.8.2 Radiative Return to the Ground State 270
 7.8.3 Thermal Quenching 272
 7.8.4 Lanthanoid Activators 274
 7.8.5 Non-Lanthanoid Activators 279
 7.8.6 Energy Transfer 281
 7.8.7 Sensitizers 283
 7.8.8 Concentration Quenching and Cross Relaxation 284
 7.8.9 Up-Conversion Photoluminescence 285
7.9 Electro luminescence 287
 7.9.1 Inorganic Light-Emitting Diodes (LEDs) 287
 7.9.2 Organic Light-Emitting Diodes (OLEDs) 289
7.10 Materials for Lighting 291
 7.10.1 Fluorescent Lamp Phosphors 292
 7.10.2 Phosphor-Converted LEDs for White Light 293
7.11 Problems 294
7.12 Further Reading 298
7.13 References 299

8 Dielectrics and Nonlinear Optical Materials 301

8.1 Dielectric Properties 301
 8.1.1 Dielectric Permittivity and Susceptibility 302
9.5 Diamagnetism 367
9.6 Paramagnetism 367
 9.6.1 Curie and Curie–Weiss Paramagnetism 368
 9.6.2 Pauli Paramagnetism 371
9.7 Antiferromagnetism 372
9.8 Supercritical Interactions 374
9.9 Ferromagnetism 377
 9.9.1 Ferromagnetic Insulators and Half-Metals 381
 9.9.2 Ferromagnetic Metals 382
 9.9.3 Superferromagnets 384
9.10 Ferrimagnetism 385
9.11 Frustrated Systems and Spin Glasses 387
9.12 Magnetolectric Multiferroics 388
9.13 Molecular and Organic Magnets 389
9.14 Problems 391
9.15 Further Reading 394
9.16 References 394

10 Conducting Materials 396
10.1 Conducting Materials 396
10.2 Metals 398
 10.2.1 Drude Model 398
 10.2.2 Free-Electron Model 402
 10.2.3 Fermi–Dirac Distribution 403
 10.2.4 Carrier Concentration 405
 10.2.5 Carrier Mobility and Effective Mass 406
 10.2.6 Fermi Velocity 407
 10.2.7 Scattering Mechanisms 409
 10.2.8 Band Structure and Conductivity of Aluminum 411
 10.2.9 Band Structures and Conductivity of Transition Metals 412
10.3 Semiconductors 414
 10.3.1 Carrier Concentrations in Intrinsic Semiconductors 414
 10.3.2 Doping 416
 10.3.3 Carrier Concentrations and Fermi Energies in Doped Semiconductors 419
 10.3.4 Conductivity 421
 10.3.5 p–n Junctions 422
 10.3.6 Light-Emitting Diodes and Photovoltaic Cells 425
 10.3.7 Transistors 426
Contents

10.4 Transition-Metal Compounds
- 10.4.1 Electron Repulsion: The Hubbard Model 428
- 10.4.2 Transition-Metal Compounds with the NaCl-Type Structure 431
- 10.4.3 Transition-Metal Compounds with the Perovskite Structure 434

10.5 Organic Conductors
- 10.5.1 Conducting Polymers 438
- 10.5.2 Polycyclic Aromatic Hydrocarbons 441
- 10.5.3 Charge-Transfer Salts 443

10.6 Carbon
- 10.6.1 Graphene 445
- 10.6.2 Carbon Nanotubes 447

10.7 Problems

10.8 Further Reading

10.9 References

11 Magnetotransport Materials
- 11.1 Magnetotransport and Its Applications 457
- 11.2 Charge, Orbital, and Spin Ordering in Iron Oxides 458
 - 11.2.1 The Verwey Transition in Magnetite, Fe$_3$O$_4$ 458
 - 11.2.2 Double-Cell Perovskite, YBaFe$_2$O$_5$ 460
 - 11.2.3 CaFeO$_3$ and SrFeO$_3$ 462
- 11.3 Charge and Orbital Ordering in Perovskite-Type Manganites 465
 - 11.3.1 Spin and Orbital Ordering in CaMnO$_3$ and LaMnO$_3$ 465
 - 11.3.2 The La$_{1-x}$Ca$_x$MnO$_3$ Phase Diagram 468
 - 11.3.3 Tuning the Colossal Magnetoresistance 470
- 11.4 Half-Metals and Spin-Polarized Transport 472
 - 11.4.1 Magnetoresistant Properties of Half-Metals 472
 - 11.4.2 CrO$_2$ 476
 - 11.4.3 Heusler Alloys 477
 - 11.4.4 Half-Metals with Valence-Mixing Itinerant Electrons 480
- 11.5 Problems 481
- 11.6 Further Reading 483
- 11.7 References 483

12 Superconductivity
- 12.1 Overview of Superconductivity 486
- 12.2 Properties of Superconductors 488
- 12.3 Origins of Superconductivity and BCS Theory 492
- 12.4 C$_{60}$-Derived Superconductors 500
- 12.5 Molecular Superconductors 505
13 Energy Materials: Ionic Conductors, Mixed Conductors, and Intercalation Chemistry

13.1 Electrochemical Cells and Batteries

13.2 Fuel Cells

13.3 Conductivity in Ionic Compounds

13.4 Superionic Conductors

- 13.4.1 AgI: A Cation Superionic Conductor
- 13.4.2 PbF$_2$: An Anionic Superionic Conductor

13.5 Cation Conductors

- 13.5.1 Sodium β-alumina
- 13.5.2 Other Ceramic Cation Conductors
- 13.5.3 Polymeric Cation Conductors

13.6 Proton Conductors

- 13.6.1 Water-Containing Proton Conductors
- 13.6.2 Acid Salts
- 13.6.3 Perovskite Proton Conductors

13.7 Oxide-Ion Conductors

- 13.7.1 Fluorite-Type Oxide-Ion Conductors
- 13.7.2 Perovskite, Aurivillius, Brownmillerite, and Other Oxide Conductors
- 13.7.3 SOFC Electrode Materials and Mixed Conductors

13.8 Intercalation Chemistry and Its Applications

- 13.8.1 Graphite Intercalation Chemistry
- 13.8.2 Lithium Intercalation Chemistry and Battery Electrodes
- 13.8.3 Lithium-Ion Batteries with Oxide Cathodes
- 13.8.4 Electrochemical Characteristics of Lithium Batteries
- 13.8.5 Other Lithium Battery Electrode Materials

13.9 Problems

13.10 Further Reading

13.11 References
14 Zeolites and Other Porous Materials

14.1 Zeolites
 - 14.1.1 Representative Structures of Zeolites
 - 14.1.2 Roles of Template Molecules in Zeolite Synthesis
 - 14.1.3 Zeolites in Catalysis
 - 14.1.4 Ion-Exchange Properties
 - 14.1.5 Drying Agents, Molecular Sieving, and Sorption
 - 14.1.6 AlPOs and Related Materials

14.2 Mesoporous Aluminosilicates

14.3 Other Porous Oxide Materials

14.4 Metal–Organic Frameworks (MOFs)
 - 14.4.1 MOF Structures
 - 14.4.2 Some Applications of MOFs

14.5 Problems

14.6 Further Reading

14.7 References

15 Amorphous and Disordered Materials

15.1 The Atomic Structure of Glasses

15.2 Topology and the Structure of Glasses

15.3 Oxide Glasses

15.4 Optical Properties and Refractive Index

15.5 Optical Fibers

15.6 Nucleation and Growth

15.7 The Glass Transition

15.8 Strong and Fragile Behavior of Liquids and Melts

15.9 Low-Temperature Dynamics of Amorphous Materials

15.10 Electronic Properties: Anderson Localization

15.11 Metallic Glasses

15.12 Problems

15.13 Further Reading

15.14 References

Appendix A: Crystallographic Point Groups in Schönflies Symbolism

Appendix B: International Tables for Crystallography

Appendix C: Nomenclature of Silicates

Appendix D: Bond-Valence Parameters in Solids

Appendix E: The Effect of a Magnetic Field on a Moving Charge

Appendix F: Coupling $j-j$
Appendix G: The Langevin Function 665
Appendix H: The Brillouin Function 666
Appendix I: Measuring and Analyzing Magnetic Properties 670
Appendix J: Fundamental Constants of Exact Value 672
References for Appendices 673
Index 674
Preface

Functional materials are an integral part of daily life. As an example, consider the materials that underpin smartphone technology. The integrated circuitry is made from complex patterns of semiconductors, metallic conductors, and insulators. Organic light-emitting diodes convert electrical signals from the processor into a vibrant high-resolution color display. The display is protected by a screen made from tough but lightweight Gorilla® glass, which is coated with a transparent conducting oxide to make the screen responsive to the touch of a finger. Magnetic materials are used in the speakers, a lithium-ion battery powers the device, specific dielectric materials are used to receive and isolate a call once the signal reaches a base station, and the list goes on.

This book explores the fascinating world of functional materials from the perspective of those who are tasked with inventing them, solid state chemists. We therefore adopt the chemist’s definition of a material as a substance whose structure and properties are controlled at the atomic level to produce a specific function. Returning to our example, a modern smartphone contains over half of the non-radioactive elements on the periodic table. A few are used in their elemental form, but in most cases the desired function can only be achieved by combining elements to form compounds. With the periodic table as a palette, how does the chemist design and synthesize the mind-boggling variety of functional materials that future technologies depend upon? That question is the topic this book explores.

The book is written specifically with teaching in mind and is intended primarily for use in upper-level undergraduate or graduate level courses. While our perspective is that of a chemist, the book is accessible to physicists and engineers as well. Mathematical details are given where they add deeper understanding, but the focus is always on relating the properties of a material to the characteristics of the atoms and molecules from which it is built.

The first six chapters cover the fundamentals of extended solids: crystal structures, defects, reactivity, phase diagrams, phase transitions, chemical bonding, and band structure. The remaining chapters, each of which is organized around a specific property or class of materials, show how the properties of modern functional materials can be understood from these fundamental concepts. Recognizing that the field of solid state chemistry is much more expansive than can be covered in a single course, the later chapters are designed to be largely independent of each other. This organization provides the instructor freedom to tailor a course to cover those materials that are most relevant for their students.

Coverage of inorganic and organic materials is interwoven throughout the book to place the emphasis on properties. To keep the scope at a manageable level, neither synthesis nor
characterization are covered in detail. Instead, boxes on synthetic methods and characterization methods are placed throughout the book to highlight specific examples. In a similar vein, boxes are used to describe how the properties of nanoscale solids differ from bulk materials (Nanoscale Concepts), and to highlight important technological applications of materials (Materials Spotlight). Students learn by practice, and, in this spirit, we have included dozens of problems at the end of each chapter to allow students to test their understanding of the concepts covered in the chapter. Instructors can obtain a full set of worked solutions on request.

We hope that this book will be a valuable source of learning for the next generations of solid state scientists and engineers and a resource for those who already work in this fascinating field.

Patrick Woodward
Pavel Karen
John Evans
Thomas Vogt
Acknowledgments

We are indebted to several organizations and countless people for their support and encouragement. PMW would like to acknowledge the Leverhulme Foundation for supporting his stay at Durham University as a Visiting Professor during the 2017–2018 academic year. TV spent the beginning of 2018 as a Fellow at Durham University’s Institute of Advanced Study. He is grateful to Linda Crowe and the rest of the team at the institute, as well as David Wilkinson, Principal at St. John’s College, for their warm hospitality and for providing an environment so conducive to scholarly work. These overlapping stays in Durham were instrumental in making the final push to finish this book. PMW is grateful for many years of support from the Solid State Materials Chemistry program of the National Science Foundation. PMW and JSOE thank Arthur Sleight for inspiration and early career mentoring. In these data-dominated times, PK is grateful to the now Professor Jiří Hanika for teaching Fortran programming in the 1970/1 course Computational Technology at the VŠCHT in Prague, and to the now Ing. František Hovorka, CSc, for the idea of taking an external typing course during the sophomore year 1967/8 at the SPŠCH Praha. We all would like to thank both colleagues and students who provided key feedback on early versions of the chapters. Finally, we thank our families for their patience and support over this long journey.