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This book is an account of a fruitful interaction between algebra, mathematical logic, and

category theory. It is possible to associate a topological space to the category of modules

over any ring. This space, the Ziegler spectrum, is based on the indecomposable

pure-injective modules. Although the Ziegler spectrum arose within the model theory of

modules and plays a central role in that subject, this book concentrates on its algebraic

aspects and uses.

The central aim is to understand modules and the categories they form through

associated structures and dimensions which reflect the complexity of these, and similar,

categories. The structures and dimensions considered arise through the application of

ideas and methods from model theory and functor category theory. Purity and associated

notions are central, localisation is an ever-present theme and various types of spectrum

play organising roles.

This book presents a unified account of material which is often presented from very

different viewpoints and it clarifies the relationships between these various approaches. It

may be used as an introductory graduate-level text, since it provides relevant background

material and a wealth of illustrative examples. An extensive index and thorough

referencing also make this book an ideal, comprehensive reference.
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Preface

In his paper [726], on the model theory of modules, Ziegler associated a topological

space to the category of modules over any ring. The points of this space are

certain indecomposable modules and the definition of the topology was in terms

of concepts from model theory. This space, now called the Ziegler spectrum, has

played a central role in the model theory of modules. More than one might have

expected, this space and the ideas surrounding it have turned out to be interesting

and useful for purely algebraic reasons. This book is mostly about these algebraic

aspects.

The central aim is a better understanding of the category of modules over a ring.

Over most rings this category is far too complicated to describe completely so one

must be content with aiming to classify the most significant types of modules and

to understand more global aspects in just a broad sense, for example by finding

some geometric or topological structure that organises some aspect of the category

and which reflects the complexity of the category.

By “significant types of modules” one might mean the irreducible representa-

tions or the “finite” (finite-dimensional/finitely generated) ones. Here I mean the

pure-injective modules. Over many rings this class of modules includes, directly

or by proxy, the “finite” ones. There is a decomposition theorem which means

that for most purposes we can concentrate on the indecomposable pure-injective

modules.

The Ziegler spectrum is one example of an “organising” structure; it is a

topological space whose points are the isomorphism classes of indecomposable

pure-injectives, and the Cantor–Bendixson analysis of this space does reflect vari-

ous aspects of complexity of the module category. There are associated structures:

the category of functors on finitely presented modules; the lattice of pp condi-

tions; the presheaf of rings of definable scalars. Various dimensions and ranks are

defined on these and they are all linked together.

xv
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xvi Preface

Here I present a cluster of concepts, techniques, results and applications. The

inputs are from algebra, model theory and category theory and many of the re-

sults and methods are hybrids of these. The way in which these combine here is

something which certainly I have found fascinating. The applications are mainly

algebraic though not confined to modules since everything works in good enough

abelian categories. Again, I have been pleasantly surprised by the extent to which

what began in model theory has had applications and ramifications well beyond

that subject.

Around 2000 it seemed to me that the central part of the subject had pretty

well taken shape, though mainly in the minds of those who were working with

it and using it. Much was not written down and there was no unified account so,

foolhardily, I decided to write one. This book, which is the result, has far outgrown

my original intentions (in length, time, effort, . . . ). In the category of books it is a

pushout of a graduate-level course and a work of reference.
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Introduction

The Ziegler spectrum, ZgR , of a ring R is a topological space. It is defined in terms

of the category of R-modules and, although a Ziegler spectrum can be assigned to

much more general categories, let us stay with rings and modules at the beginning.

The points of ZgR are certain modules, more precisely they are the isomorphism

types of indecomposable pure-injective (also called algebraically compact) right

R-modules. Any injective module is pure-injective but usually there are more,

indeed a ring is von Neumann regular exactly if there are no other pure-injective

modules (2.3.22). If R is an algebra over a field k, then any module which is finite-

dimensional as a k-vector space is pure-injective (4.2.6). Every finite module is

pure-injective (4.2.6). Another example is the ring of p-adic integers, regarded as

a module over any ring between Z and itself (4.2.8). The pure-injective modules

mentioned so far are either “small” or, although large in some sense, have some

kind of completeness property. There is something of a general point there but, as

it stands, it is too vague: not all “small” modules are pure-injective. For example,

the finite-length modules over the first Weyl algebra, A1(k), over a field k of

characteristic zero are not pure-injective (8.2.35). They are small in the sense of

being of finite length, but large in that they are infinite-dimensional. Nevertheless

each indecomposable finite-length module over the first Weyl algebra has a pure-

injective hull (a minimal pure, pure-injective extension, see Section 4.3.3) which

is indecomposable. Indeed, associating to a finite-length module its pure-injective

hull gives a bijection between the set of (isomorphism types of) indecomposable

finite-length modules over A1(k) and a subset of the Ziegler spectrum of A1(k)

(8.2.39).

Ziegler defined the topology of this space in terms of solution sets to certain

types of linear conditions (5.1.21) but there are equivalent definitions: in terms of

morphisms between finitely presented modules (5.1.25); also in terms of finitely

presented functors (10.2.45). Ziegler showed that understanding this space, in the

very best case obtaining a list of points and an explicit description of the topology,

xvii
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xviii Introduction

is the key to answering most questions about the model theory of modules over

the given ring. For that aspect one may consult [495]. Most subsequent advances

have been driven more by algebraic than model-theoretic questions though much

of what is here can be reformulated to say something about the model theory of

modules.

Over some rings there is a complete description of the Ziegler spectrum (see

especially Section 5.2 and Chapter 8); for R = Z the list of points is due to

Kaplansky [330], see Section 5.2.1.

A module which is of finite length over its endomorphism ring is pure-injective

(4.2.6, 4.4.24) but, unless the ring is right pure-semisimple (conjecturally equiv-

alent to being of finite representation type, see Section 4.5.4), one should expect

there to be “large” points of the Ziegler spectrum. Over an artin algebra a pre-

cise expression of this is the existence of infinite-dimensional indecomposable

pure-injectives (5.3.40) if the ring is not of finite representation type. This is an

easy consequence of compactness of the Ziegler spectrum of a ring (5.1.23). Even

if one is initially interested in “small” modules, for example, finite-dimensional

representations, the “large” modules may appear quite naturally: often the latter

parametrise, in some sense or another, natural families of the former (e.g. 5.2.2,

Sections 4.5.5 and 15.1.3). Examples of such large parametrising modules are the

generic modules of Crawley-Boevey (Section 4.5.5).

A natural context for most of the results here is that of certain, “definable”, sub-

categories of locally finitely presented abelian categories: the latter are, roughly,

abelian categories in which objects are determined by their “elements”, see

Chapter 16. There are reasons for working in the more general context be-

yond simply wider applicability. Auslander and coworkers, in particular Reiten,

showed how, if one is interested in finite-dimensional representations of a finite-

dimensional k-algebra, it is extremely useful to move to the, admittedly more

abstract, category of k-linear functors from the category of these representations

to the category of k-vector spaces. It turns out that, in describing ideas around the

Ziegler spectrum, moving to an associated such functor category often clarifies

concepts and simplifies arguments (and leads to new results!). By this route one

may also dispense with the terminology of model theory, though model theory

still provides concepts and techniques, and replace it with the more widely known

terminology of categories and functors. In particular, one may define the Ziegler

spectrum of a ring as a topology on the (set of isomorphism types of) indecom-

posable injectives in the corresponding functor category (12.1.17). This topology

is dual (Section 5.6) to another topology, on the same set, which one might regard

as the (Gabriel–)Zariski spectrum of the functor category (14.1.6).

This equivalence between model-theoretic and functorial methods is best ex-

plained by an equivalence, 10.2.30, between the model-theoretic category of
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“imaginaries” (in the sense of Section B.2) and the category of finitely presented

functors. There is some discussion of this equivalence between methods, and see

Appendix C, but I have tended to avoid the terminology of model theory, except

where I consider it to be particularly efficient or where there is no algebraic equiv-

alent. That is simply because it is less well known, though I hope that one effect

of this book will be that some people become a little more comfortable with it.

This does mean that those already familiar with model theory might have to work

a bit harder than they expected: the terminological adjustments are quite slight,

but the conceptual adjustments (the use of functorial methods) may well require

more effort. It should be noted that much of the relevant literature does assume

familiarity with the most basic ideas from model theory.

As mentioned already, it is possible to give definitions (5.1.1, 5.1.25) of the

Ziegler spectrum of a ring purely in terms of its category of modules, that is,

without reference to model theory or to any “external” (functor) category. In fact

the book begins by taking a “naı̈ve”, element-wise, view of modules and gradually,

though not monotonically, takes an increasingly “sophisticated” view. I discuss

this now.

I believe that there is some advantage in beginning in the (relatively) concrete

context of modules and, consequently, in the first part of the book, modules are

simply sets with structure and most of the action takes place in the category

of modules. Many results are presented, or at least surveyed, in that first part,

so a reader may refer to these without having to absorb the possibly unfamiliar

functorial point of view.

Nevertheless, it was convincingly demonstrated by Herzog in the early 1990s

that the most efficient and natural way to prove Ziegler’s results, and many subse-

quent ones, is to move to the appropriate functor category. Indeed it was already

appreciated that work, particularly of Gruson and Jensen, ran, in places, parallel

to pre-Ziegler results in the model theory of modules and some of the trans-

lation between the two languages (model-theoretic and functorial) was already

known.

Furthermore, many applications have been to the representation theory of finite-

dimensional algebras, where functorial methods have become quite pervasive. So,

at the beginning of Part II, we move to the functor category. In fact, the ground

will have been prepared already, in the sense that I call on results from Part II

in more than a few proofs in Part I. The main reason for this anticipation, and

consequent complication in the structure of logical dependencies in the book,

is that I wish to present the functorial proofs of many of the basic results. The

original model-theoretic and/or algebraic (“non-functorial”) proofs are available

elsewhere, whereas the functorial proofs are scattered in the literature and, in many

cases, have not appeared.
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In the second part of the book modules become certain types of functors on

module categories: in the third part they become functors on functor categories.

This third part deals with results and questions clustering around relationships

between definable categories. Model theory reappears more explicitly in this part

because it is, from one point of view, all about interpretability of one category in

another.

One could say that Part I is set mostly in the category Mod-R, that Part II is

set in the functor category (R-mod, Ab) and that Part III is set in the category
�

(R-mod, Ab)fp, Ab
�

. The category, Ex
�

(R-mod, Ab)fp, Ab
�

, of exact functors on

the category (R-mod, Ab)fp appears and reappears in many forms throughout the

book.

A second spectrum also appears. The Zariski spectrum is well known in the

context of commutative rings: it is the space of prime ideals endowed with the

Zariski topology. It is also possible to define this space, à la Gabriel [202],

in terms of the category of modules, namely as the set of isomorphism types of

indecomposable injectives endowed with a topology which can be defined in terms

of morphisms from finitely presented modules. That definition makes sense in the

category of modules over any ring, indeed in any locally finitely presented abelian

category. Applied to the already-mentioned functor category (R-mod, Ab), one

obtains what I call the Gabriel–Zariski spectrum. It turns out that this space can

also be obtained from the Ziegler spectrum, as the “dual” topology which has, for a

basis of open sets, the complements of compact open sets of the Ziegler topology.

Much less has been done with this than with the Ziegler topology and I give

it a corresponding amount of space. I do, however, suspect that there is much

to discover about it and to do with it. The Gabriel–Zariski spectrum has a much

more geometric character than the Ziegler spectrum, in particular it carries a

sheaf of rings which generalises the classical structure sheaf: it is yet another

“non-commutative geometry”.

Chapters 1–5 and 10–12, minus a few sections, form the core exposition. The

results in the first group of chapters are set in the category of modules and lead

the reader through pp conditions and purity to the definition and properties of

the Ziegler spectrum. The methods used in the proofs change gradually; from

elementary linear algebra to making use of functor categories. One of my reasons

for writing this book, rather than being content with what was already in the

literature, was to present the basic theory using these functorial methods since

they have lead to proofs which are often much shorter and more natural than

the original ones. The second group of chapters introduces those methods, so the

reader of Chapters 1–5 must increasingly become the reader of Chapters 10–12.

Beyond this core, further general topics are presented in Chapters 6 and 14

(rings and sheaves of definable scalars, the Gabriel–Zariski topology) and in
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Chapters 7 and 13 (dimensions). Chapter 9, on ideals in mod-R, leads naturally to

the view of Part II.

Already that gives us a book of some 500 pages, yet there is much more which

should be said, not least applications in specific contexts. At least some of that

is said in the remaining pages, though often rather briefly. Chapter 8 contains

examples and descriptions of Ziegler spectra over various types of ring. Some

of the most fruitful development has been in the representation theory of artin

algebras (Chapter 15). The theory applies in categories much more general than

categories of modules and Chapters 16 and 17 present examples. In these chapters

the emphasis is more on setting out the basic ideas and reporting on what has been

done, so rather few proofs are given and the reader is referred to the original

sources for the full story.

Though the book begins with systems of linear equations, by the time we

arrive at Part III we are entering very abstract territory, an additive universe which

parallels that of topos theory. Chapter 18 introduces this, though not at great length

since this is work in progress and likely not to be in optimal form.

Ziegler’s paper was on the model theory of modules and, amongst all this

algebraic development, we should not forget the open questions and developments

in that subject, so Appendix D is a, very brief, update on the model theory of

modules per se.

Beyond this, there is background on model theory in Appendices A and B, as

well as general background (Appendix E) and a model theory/functor category

theory “dictionary” (Appendix C).

Relationship with the earlier book and other work As to the relationship of

this book with my earlier one Model Theory and Modules [495], this is, in a

sense, a sequel but the emphases of the two books are very different. The earlier

book covered model-theoretic aspects of modules and related algebraic topics,

and it was written from a primarily model-theoretic standpoint. In this book the

viewpoint is algebraic and category-theoretic though it is informed by ideas from

model theory. No doubt the model theory proved to be an obstacle for some readers

of [495] and perhaps the functor-category theory will play a similar role in this

book. But I hope that by introducing the functorial ideas gradually through the

first part of this book I will have made the path somewhat easier. Readers who

have some familiarity with the contents of [495] will find here new results and

fresh directions and they will find that the text reflects a great change in viewpoint

and expansion of methods that has taken place in the meantime.

The actual overlap between the books is rather smaller than one might expect,

given that they are devoted to the same circle of ideas. Part of the reason for this

is that many new ideas and results have been produced in the intervening years.
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If that were all, then an update would have sufficed. But one of the reasons for

my writing this book is to reflect the fundamental shift in viewpoint, the adoption

of a functor-category approach, that has taken place in the area. Although, in this

context, the languages of model theory and functor-category theory are, in essence

and also in many details, equivalent (indeed, I provide, at Appendix C, a dictionary

between them) there have proved to be many conceptual advantages in adopting

the latter language. Readers familiar with the arguments of [495] or Ziegler’s

paper, will see here how complex and sometimes apparently ad-hoc arguments

become natural and easy in this alternative language. That is not to say that the

insights and techniques of model theory have been abandoned. In fact they inform

the whole book, although this might not always be apparent. Some model-theoretic

ideas have been explicitly retained, for example the notion of pp-type, because we

need this concept and because there is no algebraic name for it. On the other hand,

there is no need in this book to treat formulas as objects of a formal language,

so I refer to them simply as conditions (which is, in any case, how we think of

them).

In the more model-theoretic approach there was a conscious adaptation of

ideas from module theory (at least on my part, see, for example, [495, p. 173],

and, I would guess, also by Garavaglia, see especially [209]), using the heuristic

that pp conditions are generalised ring elements, that pp-types are generalised

ideals (in their role as annihilators) and that various arguments involving positive

quantifier-free types in injective modules extend to pp-types in pure-injective

modules. Moving to the functor category has the effect of turning this analogy into

literal generalisation. See, for example, the two proofs of 5.1.3 bearing in mind

the heuristic that a pp-type is a generalised right ideal.

Various papers and books contain significant exposition of some of the material

included here. Apart from my earlier book, [495], and some papers, [493], [497],

[503], [511], there are Rothmaler’s, [620], [622], [623], the survey articles [61],

[484], [568], [514], [728], a large part of the book, [323], of Jensen and Lenzing,

the monograph, [358], of Krause and sections in the books of Facchini, [183], and

Puninski, [564]. There is also the more recent [516] which deals with the model

theory of definable additive categories.

In this book I have tried to include at least mention of all recent significant

developments but, in contrast to the writing of [495], I have tried, with a degree of

success, to restrain my tendency to aim to be encylopaedic. There are some topics

which I just mention here because, although I would have liked to have said more,

I do not have the expertise to say anything more useful that what can easily be

found already in the literature. These include: the work of Guil Asensio and Herzog

developing a theory of purity in Flat-R (see the end of Section 4.6); recent and

continuing developments around cotilting modules and cotorsion theories (see
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the end of Section 18.2.3); work of Beligiannis and others around triangulated

categories and generalisations of these (see Chapter 17).

Thanks, especially, to: Ivo Herzog who, in the early 1990s, showed me how

Ziegler’s arguments become so much easier and more natural in the functor cate-

gory; Kevin Burke, Bill Crawley-Boevey and Henning Krause who convinced me

in various ways of the naturality and power of the functor category idiom and of

the desirability of adopting it.

I am also grateful to a number of colleagues, in particular to Gena Puninski,

for comments on a draft of this.

General comments Occasionally I define a concept or prove a result that is

defined or proved elsewhere in the book. Oversights excepted, this is to increase

the book’s usefulness as a reference. For example, if a concept is defined using the

functor-category language, or in a very general context, it can be useful to have

an alternative definition, possibly in a more particular context, also to hand.

I also play the following mean trick. In Part I, R is a ring and modules are what

you think they are. In Part II, I reveal that R was, all the time, a small preadditive

category and that what you thought were modules were actually functors. To have

been honest right through Part I would have made the book even harder to read.

In any case, you have now been warned.

Bibliography As well as containing items which are directly referenced, the

bibliography is an “update” on that in [495], so contains a good number of items

which do not occur in the bibliography of [495] but which continue or are relevant

to some of the themes there. In particular I have tried to be comprehensive as

regards including papers which fall within the model theory of modules, even

though I have only pointed to the developments there.

Conventions and notations

Conventions A module will be a right module if it matters and if the

contrary is not stated.

Tensor product · means, unless indicated otherwise, tensor product over R,

·R, where R is the ring of the moment.

By a functor between preadditive categories is meant an additive functor even

though “additive” is hardly ever said explicitly.

“Non-commutative” means “not necessarily commutative”.

To say that a tuple of elements is from M is to say that each entry of the tuple

is an element of M (the less accurate “in” in place of “from” may have

slipped through in places).
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The value of a function f (or functor F ) on an element a (or object A or

morphism g) is usually denoted f a (respectively FA, Fg) but sometimes,

for clarity or to avoid ambiguity, f (a) or f · a (and similarly).

I make no distinction between monomorphisms and embeddings and my use

of the terms is determined by a mixture of context and whim: similarly for

map, morphism and homomorphism.

In the context of categories I write A � B if the categories A and B are

naturally equivalent. Sometimes the stronger relation of isomorphism

holds but we don’t need a different symbol for that.

Equality, “=”, often is used where � (isomorphism or natural equivalence)

would be more correct, especially, but not only, if our choice of copy has

not yet been constrained.

I write l(a) for the length (number of entries) of a tuple a. By default a tuple

has length “n” and this explains (I hope all) unheralded appearances of this

symbol. If a is a tuple, then its typical coordinate/entry is ai .

Tuples and matrices are intended to match when they need to. So, if a, b are

tuples, then the appearance of “a + b” implies that they are assumed to

have the same length, and the expression means the tuple with ith

coordinate equal to ai + bi . Similarly, if a and b are tuples and H is a

matrix, then writing “(a b)H = 0” implies that the number of rows of H is

the length of a plus the length of b. The notations (a b), (a, b) and ab are all

used for the tuple whose entries are the entries of a followed by those of b.

If X is a subset of the R-module Mn and W is a subset of Rn, then by X · W

we mean the subgroup of M generated by the (a1, . . . , an) · (r1, . . . , rn)

=
�n

i=1 airi with (a1, . . . , an) * X and (r1, . . . , rn) * W . If, on the other

hand, X ¦ M and W ¦ Rn, then X · W will mean the subgroup of Mn

generated by the (ar1, . . . , arn) with a * M and (r1, . . . , rn) * W .

Sometimes the “·” will be omitted. So read this as “dot product” if that

makes sense, otherwise diagonal product.

For matrices I use notation such as (rij )ij meaning that i indexes the rows, j

the columns and the entry in the ith row and j th column is rij . I also use, I

hope self-explanatory, partitioned-matrix notation in various places.

Notation such as (Mi)i is used for indexed sets of objects and I tend to refer to

them (loosely and incorrectly – there may be repetitions) as sets.

If I say that a ring is noetherian I mean right and left noetherian: similarly

with other naturally one-sided conditions.

The “radical” of a ring R means the Jacobson radical and this is denoted J (R)

or just J . The notation “rad” is used for the more extended (to modules,

functors, categories) notion.
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If C is a category, then a class of objects of C is often identified with the full

subcategory which has these as objects.

The notation (co)ker(f ) and term (co)kernel are used for both the object and

the morphism.

The notation § is used for both Hom- and Ext-orthogonality, depending on

context.

The ordering on pp-types is by solution sets, so I write p g q if

p(M) g q(M) for every M . Therefore p g q iff p ¦ q (the latter inclusion

as sets of pp conditions). This is the opposite convention from that adopted

in [495]. There are arguments for both but I think that the convention here

makes more sense.

If Ç is a condition and v is a sequence of variables, then writing Ç (v) implies

that the free variables of Ç all occur in v but not every component variable

of v need actually occur in Ç .

I will be somewhat loose regarding the distinction between small and

skeletally small categories, for instance stating a result for small categories

but applying it to skeletally small categories such as mod-R.

The term “tame (representation type)” sometimes includes finite

representation type, but not always; the meaning should be clear from the

context.

The term “torsion theory” will mean hereditary torsion theory unless

explicitly stated otherwise.

Morphisms in categories compose to the left, so fg means do g then f . So, in

the category L
eq+

R associated to the category of right R-modules, pp-defined

maps compose to the left. The action of these maps on right R-modules is,

however, naturally written on the right, so the ring of definable scalars of a

right R-module is the opposite of a certain endomorphism ring in the

corresponding localisation of this category. I have tried to be consistent in

this but there may be places where an op should be inserted.

The term “preprint” is used to mean papers which are in the public domain but

which might or might not be published in the future.

Notations The notation Zn is used for the factor group Z/nZ. The

localisation of Z at p is denoted by Z(p) and the p-adic integers by Z(p).

End(A) denotes the endomorphism ring of A and Aut(A) its automorphism

group. The group, Hom(A,B), of morphisms from A to B is usually

abbreviated to (A,B). Similar notation is used in other categories, for

example, if C, D are additive categories (with C skeletally small), then

(C,D) denotes the category of additive functors from C to D.
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R[X1, . . . , Xn] denotes the ring of polynomials with coefficients from R in

indeterminates X1, . . . , Xn which commute with each other and with all

the elements of R; R�X1, . . . , Xn� denotes the free associative R-algebra

in indeterminates X1, . . . , Xn; “non-commutative polynomials over R”

with the elements of R acting centrally (R will be commutative whenever

this notation appears).

Annihilators: annR(A) = {r * R : ar = 0 "a * A}, where A ¦ MR , and the

obvious modifications annR(a), annR(a1, . . . , an);

annM (T ) = {a * M : at = 0 "t * T } where T ¦ R.

The socle, soc(M), of a module M is the sum of all its simple submodules.

C(R) denotes the centre, {r * R : sr = rs "s * R}, of the ring R.

ppn
R is the lattice of equivalence classes of pp conditions in n free variables for

right R-modules.

ppn(M) is the lattice of subgroups of Mn pp-definable in M; this may be

identified with ppn
R modulo the equivalence relation of having the same

value on M .

ppn(X ) is ppn
R modulo the equivalence relation of having the same value on

every member of X and this is equal to ppn(M) for any M with �M� = X .

ppn(X) (for X a closed subset of the Ziegler spectrum) is ppn(X ) if X is a

definable subcategory with X + ZgR = X.

L
eq+

R , (L
eq+

R )M , (L
eq+

R )X (also L
eq+(X )), (L

eq+

R )X denote the categories of pp

sorts and pp-definable maps for R-modules and then relativised

respectively as above.

�M� is the definable subcategory generated by M .

[Ç]M denotes the the image of Ç * ppn
R in ppn(M) (similarly with X or X in

place of M).

[Ç,Ë], [Ç,Ë]M , [Ç,Ë]X , [Ç,Ë]X (with the assumption Ç g Ë) denote the

interval in the lattice ppn
R between Ç and Ë and then the respective

relativisations as above.

Zg(X ) is X + ZgR , equipped with the relative topology, when X is a definable

subcategory of Mod-R.

Latt(2) denotes the lattice of subobjects of (2); the lattice of finitely

presented, respectively finitely generated, subobjects is indicated by

superscript fg, resp. fp, or, if finitely generated = finitely presented, just by f .

Mod(T ) is the class of modules on which every pp-pair in T (a set of pp-pairs)

is closed.

pinjR denotes the class of indecomposable pure-injective right R-modules or,

more usually, the set of isomorphism classes of these.

PinjR denotes the class (or full subcategory) of all pure-injective right

R-modules.
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proj-R denotes the class of finitely generated projective right R-modules.

Flat-R denotes the class of all flat right R-modules and R-Flat the class of all

flat left R-modules; and similarly, lower case indicates “small”

(indecomposable, finitely presented, finitely generated, as appropriate),

upper case indicates all.

The choice of subscript R or notation like -R is not significant (thus

InjR = Inj-R = Inj(Mod-R)). What is significant is the notational

difference between proj-A (or projA) and proj(A): the former refers to

projective right modules over the category A, the latter to projective

objects in the category A.

I will write, for instance, “the set of indecomposable injectives” even though

it is the isomorphism types of these which form a set and which is what I

really mean.

These are various ways of writing the same thing: a * Ç(M); M |= Ç(a); a

satisfies Ç in M; Ç(a) is true in M; a is a solution of/to Ç in M . And

similarly with a pp-type p in place of the pp condition Ç.

N |M means N is a direct summand of M .

Add(Y), respectively add(Y), denotes the closure of the class Y under direct

summands of arbitrary, respectively finite, direct sums.

Here are four notations for the same object: L
eq+

R ; (mod-R, Ab)fp; Ab(Rop);

fun-R. Defined as different objects, these small abelian categories turn out

to the same (that is, equivalent categories).
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Selected notations list

supp(M): support of M

ppM (a): pp-type of a in M

H (M): pure-injective hull of M

H (a): hull of a

H (p): hull of pp-type p

E(M): injective hull of M

�M�: definable subcategory generated by M

�Ç�: pp-type generated by Ç

DÇ: (elementary) dual of pp condition Ç

dF : dual of functor F

(M,a): pointed module

Ç(M): solution set of Ç in M

RM : ring of definable scalars of M

(A,2): representable functor

(�)(2): localisation of � at 2

(Ç/Ë), (F ), (f ): basic Ziegler-open sets

[Ç/Ë] etc.: complement, (Ç/Ë)c, of above

(2)fp: subcategory of finitely presented presented objects
2³
F : extension of F to functor commuting with direct limits

L
eq+

R : category of imaginaries/pp sorts and maps

ZgR , Zg(D): Ziegler spectrum

ZarR: rep-Zariski spectrum

(L)DefR: sheaf/presheaf of definable scalars

ppn
R: lattice of pp conditions

Lattf : lattice of “finite” subobjects

fun-R and fund-R; functor category and dual functor category

w(2): width

mdim(2); m-dimension

KGdim(2), KG(2): Krull–Gabriel dimension

Udim(2), UD(2): uniserial dimension

CB(2): Cantor–Bendixson rank
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