
1
Introduction

In this chapter we introduce some basic definitions for graphs, maps, and polyhedra.
We present here the basic notions. Further definitions will be introduced later when
needed. The reader can consult the following books for more detailed information:
[Grü67], [Cox73], [Mun71], [Cro97].

1.1 Graphs

A graph G consists of a set V of vertices and a set E of edges such that each edge is
assigned two vertices at its ends. Two vertices are adjacent if there is an edge between
them. The degree of a vertex v ∈ V is the number of edges to which it is incident.
A graph is said to be simple if no two edges have identical end-vertices, i.e. if it has
no loops and multiple edges. In the special case of simple graphs, automorphisms
are permutations of the vertices preserving adjacencies. For non-simple graphs (for
example, when 2-gons occur) an automorphism of a graph is a permutation of the
vertices and a permutation of the edges, preserving incidence between vertices and
edges. By Aut(G) is denoted the group of automorphisms of the graph G; a synonym
is symmetry group.

For U ⊆ V , let EU ⊆ E be the set of edges of a graph G = (V, E) having end-
vertices in U . Then the graph GU = (U, EU ) is called the induced subgraph (by U )
of G.

A graph G is said to be connected if, for any two of its vertices u, v, there is a path
in G joining u and v. Given an integer k ≥ 2, a graph is said to be k-connected, if it
is connected and, after removal of any set of k − 1 vertices, it remains connected.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Their Cartesian product
G1 × G2 is the graph G = (V1 × V2, E) with vertex-set:

V1 × V2 = {(v1, v2) : v1 ∈ V1 and v2 ∈ V2}
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2 Chemical Graphs, Polycycles, and Two-faced Maps

and whose edges are the pairs ((u1, u2), (v1, v2)), where u1, v1 ∈ V1 and u2, v2 ∈ V2,
such that either (u1, v1) ∈ E1, or (u2, v2) ∈ E2.

A subset E ′ of edges of a graph is called a matching if no two edges of E ′ have a
common end-vertex. A perfect matching is a matching such that every vertex belongs
to exactly one edge of the matching.

The following graphs will be frequently used:

• The complete graph Kn is the graph on n vertices v1, . . . , vn with vi adjacent to v j

for all i �= j .

• The path Pn = Pv1,v2,...,vn is the graph with n vertices v1, . . . , vn and n − 1 edges
(vi , vi+1) for 1 ≤ i ≤ n − 1.

• The circuit Cn = Cv1,v2,...,vn (or n-gon) is the path Pv1,v2,...,vn with additional edge
(v1, vn).

A plane graph is a connected graph, together with an embedding on the plane such
that every edge corresponds to a curve and no two curves intersect, except at their
end points. A graph is planar if it admits at least one such embedding. It is known
that any planar graph admits a plane embedding with the edges being straight lines
(see [Wa36, Fa48, Tut63]). A face of a plane graph is a part of the plane delimited
by a circuit of edges. A plane graph defines a partition of the plane into faces. If a is
a vertex, edge, or face and b is a edge, face, or vertex, then a is said to be incident
to b if a is included in b or b is included in a. Two vertices, respectively, faces are
called adjacent if they share an edge. We will call gonality or covalence of a face
the number of its vertices. A face is exterior if it is non-bounded. Bounded faces
are called interior. Any finite plane graph has exactly one exterior face. An infinite
plane graph can have any number, from zero to infinity, of exterior faces. A planar
3-connected graph admits exactly one plane embedding on the sphere, i.e. the set of
faces is determined by the edge-set.

The v-vector v(G) = (. . . , vi , . . .) of a graph G enumerates the numbers vi of
vertices of degree i . A plane graph is k-valent if vi = 0 for i �= k. The p-vector
p(G) = (. . . , pi , . . .) of a plane graph G counts the numbers pi of faces of gonality i .
For a connected plane graph G, denote its plane dual graph by G∗ and define it on
the set of faces of G with two faces being adjacent if they share an edge. Clearly,
v(G∗) = p(G) and p(G∗) = v(G).

1.2 Topological notions

We present in this section the topological notions for the surfaces which will be used.
Topology is concerned with continuous structures and invariants under continuous
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Introduction 3

deformations. Since we are working with vertices, edges, and faces, the classical
definitions will be adapted to our context.

No proofs are given but we hope to compensate for this by giving some geometri-
cal examples. More thorough explanations are available in basic algebraic topology
textbooks, for example, [Hat01] and [God71].

1.2.1 Maps

A map M is a family of vertices, edges, and faces such that every edge is con-
tained in at least one and at most two faces. An edge, contained in exactly one
face, is called a boundary edge; all such edges form the boundary. A map is called
closed if it has no boundary. A map is called finite if it has a finite number of ver-
tices, edges, and faces. See below plane graphs related to Prism5 (see Section 1.5)
with same vertex- and edge-sets but different face-sets; their boundary edges are
boldfaced:

A closed map, cell-complex of a
polyhedron. It is a 5R0, 4R2
plane graph (see Chapter 9)

A map with boundary edges.
It is a ({4, 5}, 3)-polycycle

(see Chapter 7)

A map with boundary edges;
not simply connected. It is a

(4, 3)gen-polycycle (see Section 4.5)

Not a map because two edges
are not contained in a face.

It is not considered

If M is a closed map, then we can define its dual map M∗ by interchanging faces
and vertices. See Section 4.1 for some related duality notions for non-closed maps.
A map is called a cell-complex if the intersection of any two faces, edges, or vertices
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4 Chemical Graphs, Polycycles, and Two-faced Maps

is a face, edge, vertex, or ∅. Maps with 2-gons are not cell-complexes; they are CW-
complexes (see, for example, [Rot88]).

Denote by S
2 the 2-dimensional sphere defined by {x = (x1, x2, x3) ∈ R

3 : x2
1 +

x2
2 + x2

3 = 1}. For a point A of S
2, let A′ be its opposite and the plane HA be the

plane orthogonal to AA′ passing through A′. In the following, take A = (0, 0,−1);
then HA is the set of all x ∈ R

3 with x3 = 1. If B ∈ S
2 − {A}, then the intersection

of the line AB with the plane HA defines a point f A(B). This establishes a bijection,
called a Riemann map, between S

2 − {A} and the plane HA; we can extend f A to A
by defining f A(A) to be the “point at infinity” of the plane HA.

Let G be a finite plane graph on R
2 	 HA and let f −1

A (G) denote its image in S
2.

The vertices of G correspond to points of the sphere S
2, the edges of G correspond

to non-intersecting curvilinear lines on S
2 and the faces of G correspond to domains

of S
2 delimited by circuit of those lines. The exterior face of G corresponds to a

domain of S
2 containing A. Reciprocally, if we have a map M on the sphere, then

we can find a point A, which does not belong to M and the corresponding plane HA,
the image of M on HA is a finite plane graph. So, by abuse of language, we will use
the term “sphere” not only for the surface S

2 but also for any combinatorial map on
it, i.e. a finite plane graph.

A reader who is interested only in plane graphs, our main subject, can move now
directly to Section 1.4. But, for full understanding of the toroidal case, we need maps
in all their generality. For reference on Map Theory; see, for example, [BoLi95] and
[MoTh01].

We will also work with maps having an infinite number of vertices, edges,
and faces. The vertex-degrees will always be bounded by some constant; how-
ever, faces could have an infinity of edges. Amongst plane drawing of those
maps, we will allow only locally finite ones, i.e. those admitting an embed-
ding such that any bounded domain contains a finite number of vertices. Con-
sider, for example, the map Z̃2 obtained as the quotient map of square tiling
Z

2 by the translation operation (x, y) 
→ (x + 10, y). The map Z̃2 is an infi-
nite cylinder made of consecutive rings of ten 4-gons. We can draw those rings
concentrically on the plane, but the resulting plane graph will not be locally
finite.

1.2.2 Orientability and classification of surfaces

A flag of a map is a triple (v, e, f ), where v is a vertex contained in the edge e and e
is contained in the face f . Given a flag F = (v, e, f ), the flags differing from F only
in v, e or f are denoted by σ0(F), σ1(F) and σ2(F), respectively. σ0(F) and σ1(F)
are always defined over the flag-set F(M) of M but σ2(F) is not always defined if
M is not closed.
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Introduction 5

The map M is called oriented if there exist a bipartition F1, F2 of F(M) such
that, for any (v, e, f ) ∈ F1, the flag σi (v, e, f ), if it exists, belongs to F2. We will
be almost exclusively concerned with oriented maps.

The notion of orientation is easy to define algebraically but difficult to visualize,
because closed non-orientable maps cannot be represented by a picture. Fortunately,
this is easier for maps with boundaries; see Figure 1.1 for a non-orientable map,
called Möbius strip. The non-orientability can be seen in the following way: mov-
ing along one side of the strip and doing a full circuit, we arrives at the other
side of the strip. All boundary edges of a Möbius strip belong to a unique cycle;
after adding a face to this cycle, we obtain the projective plane P

2. The projec-
tive plane can also be obtained by taking a map on the sphere (like Dodecahedron)
and identifying the opposite vertices, edges, or faces, i.e. taking the antipodal
quotient.

Figure 1.1 A Möbius strip

Given a surface S, we can add to it a handle:

or a cross-cap.1 The handle and cross-cap can be seen as a cylinder and a Möbius
strip, respectively.

Consider now the classification of finite maps:

Theorem 1.2.1 Any finite closed map is one of the following:

1 the sphere S
2 (orientable),

2 the sphere S
2 with g handles (orientable),

3 the sphere S
2 with g cross-caps (non-orientable).

1 See, for example, http://mathworld.wolfram.com/Cross-Cap.html for pictures of cross-caps.
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6 Chemical Graphs, Polycycles, and Two-faced Maps

Theorem 1.2.1 is proved, for example, in [Mun71]. The number g above is called the
genus of the map. All finite closed maps, that occur below, are:

1 the sphere S
2 with g = 0 (orientable),

2 the torus T
2 with g = 1 (orientable),

3 the projective plane P
2 with g = 1 (non-orientable),

4 the Klein bottle K
2 with g = 2 (non-orientable); one way to obtain the Klein

bottle is to take the quotient of a torus R
2
/Z2 by the fixed-point-free automorphism

f (x, y) = (x + 1
2 ,−y).

If M is a finite non-closed map, then we can add some faces along the boundary
edges and obtain a closed map. So, finite non-closed maps are obtained by removing
some faces of closed ones.

1.2.3 Fundamental groups, coverings, and quotient maps

Fix an orientation on every edge of a given map M and define the free group G(M)
with generators ge indexed by the edge-set of M (see, for example, [Hum96] for
relevant definitions in Group Theory). An oriented path OP = (v1, v2), . . . , vm is
a sequence of vertices with vi adjacent to vi+1. For an edge ei = (vi , vi+1), denote
by g(vi , vi+1) the group element gei if ei is oriented from vi to vi+1, and g−1

ei
oth-

erwise. Associate to the oriented path the product g(OP) = g(v1, v2)g(v2, v3) . . .

g(vm−1, vm).
Denote by Zv(M) the set of all g(OP) with OP being the set of oriented

closed paths starting and finishing at a given base vertex v. It is a group; revers-
ing orientation corresponds to taking the inverse and product to concatenating
closed paths. Given a face F of M , bounded by a circuit of vertices (v1, . . . , v|F |),
and an oriented path OP from the vertex v to the vertex v1, consider a group
element g(OP)g(v1, v2, . . . , v|F |, v1)g(OP)−1. Denote by Bv(M) the subgroup of
G(M) generated by all such elements. The fundamental group π1(M) is the quo-
tient group of the group Zv(M) by the normal subgroup Bv(M). Two oriented
closed paths having a common vertex v are called homotopic if they correspond
to the same element in the group π1(M). The group Bv(M) is the group of all
elements homotopic to the null path, i.e. the path from v to v with 0 edges. If
we replace the base vertex v by another base vertex w, then, for any oriented
path OP from v to w, we have Zv(M) = gZwg−1 and Bv(M) = gBwg−1

with g = g(OP). So, the fundamental group depends on the base vertex, but
only up to conjugacy. A map is called simply connected if π1(M) is trivial, i.e.
every path is homotopic to the null path. This is equivalent to saying that every
two paths with the same beginning and end can be continuously deformed one to
the other.
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Introduction 7

See below three homotopic paths in the same map:

See below again three plane maps and a closed path represented in it:

M1 is simply connected M2 is simply connected M3 is not simply connected

In M1 and M2, the closed path is homotopic to a null path. In M1, this cycle is
the boundary of a face, while in M2, the closed path is the boundary of all faces
put together. More generally, a plane graph and a finite plane graph minus a face
are simply connected. But the closed path in M3 is not homotopic to a null path.
Actually, this closed path is a generator of the fundamental group π1(M3) 	 Z.

Given two maps M and M ′, a cell-homomorphism of maps φ : M → M ′ is a
function that maps vertices, edges, and faces of M to the ones of M ′, while preserving
the incidence relations. An isomorphism is a cell-homomorphism that is bijective. If
M = M ′, it is called an automorphism; the set of all automorphism of a map M is
called the symmetry group of M . An automorphism f of a map M is called fixed-
point-free if f is the identity or, for every vertex, edge, face of M , its image in f
is different from it. If G is a group of fixed-point-free automorphisms of a map M ,
then M/G is the quotient map of M by G. Its vertices, edges, and faces are formed
by orbits of vertices, edges, and faces of M (by G) with the incidence relations being
induced by the ones of M .

The quotient of a map can be a map with loops and multiple edges. Consider,
for example, the 4-valent plane tiling {4, 4} (see Section 1.5) formed by 4-gons and
the group Z

2 acting by translations on it. There is one orbit of vertices, two orbits of
edges, and one orbit of faces under Z

2; so the quotient {4, 4}/Z2 is a torus represented
by a single vertex and two loops.

For a vertex v (or edge e, or face f ), the standard neighborhood N (v) is the set
of all vertices, edges, and faces incident to v. A local isomorphism is a continuous
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8 Chemical Graphs, Polycycles, and Two-faced Maps

mapping φ: M → M ′ such that, for any vertex v ∈ M (or edge, or face), the mapping
from N (v) to N (φ(v)) is bijective. A covering is a local isomorphism such that for
every vertex v′ ∈ M ′ (or edge, or face) and w′ ∈ N (v′), if φ−1(v′) = (vi )i∈I , we have
an element wi ∈ N (vi ) such that wi �= w j if i �= j and φ−1(w′) = (wi )i∈I .

If OP ′ = (v′
1, . . . , v

′
m) is an oriented path in M ′, φ is a covering and v1 is a vertex

in M with φ(v1) = v′
1, then there exists a unique oriented path OP = (v1, . . . vm)

in M such that φ(OP) = OP ′. A deck automorphism is an automorphism u of M
such that φ ◦ u = φ, u is necessarily fixed-point-free. If v′ ∈ M ′, then, for any two
v1, v2 ∈ φ−1(v′), there exists a deck automorphism u such that u(v1) = v2.

Given a map M , its universal cover is a simply connected map M̃ (unique up to
isomorphism) with a covering φ : M̃ → M . The map M̃ is finite if and only if M and
π1(M) are finite. The fundamental group π1(M) is isomorphic to the group of deck
automorphisms of φ. If H is a subgroup of a group G, then its normalizer, denoted
by NG(H ), is defined as:

NG(H ) = {x ∈ G : xhx−1 ∈ H for all h ∈ H}.
The group Aut(M) of automorphisms of M is identified with the quotient group:

NAut(M̃)(π1(M))/π1(M).

The simplest and most frequently used case is when M is a closed finite map on
the sphere. In this case π1 is trivial and we can represent the map nicely on the plane
with a face chosen to be exterior. An infinite locally finite closed simply connected
map can be represented on the plane. In this case, there is no exterior face and the
map fills completely the plane.

A closed torus M can be represented as a 3-dimensional figure projected on to the
plane, but this is not very practical. We represent its universal cover M̃ as a plane
having two periodicity directions, i.e. a 2-periodic plane graph. The group π1(M) is
isomorphic to Z

2 and it is represented on M̃ as a group of translation symmetries.
By choosing a finite index subgroup H of the group G (i.e. such that there exist

g1, . . . , gm ∈ G with G = ∪i gi H ) of deck transformations and taking the quo-
tient, we can obtain a bigger torus; such tori have a translation subgroup, which is
isomorphic to the quotient G/H .

On the other hand, given a torus with non-trivial translation group, there exists a
unique minimal torus with the same universal cover and trivial translation subgroup.
Those minimal tori correspond, in a one-to-one way, to periodic tilings of the plane.

1.2.4 Homology and Euler–Poincaré characteristic

Given a map M , assign an orientation on each of its edges and form a Z-module
C1(M) using this set of oriented edges as basis. The Z-module Z1(M) is the sub-
module of C1(M) generated by the set of closed oriented cycles of M . Given any
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Introduction 9

face of M , associate to it the set of incident edges in clockwise orientation; the gen-
erated Z-module is denoted by B1(M). It is easy to see that B1(M) is a submodule of
Z1(M).

The homology group H1(M) is the quotient of Z1(M) by its subgroup B1(M).
Again, we refer to Algebraic Topology textbooks for details. If M is a torus, then
H1(M) is isomorphic to π1(M).

If M is an orientable finite closed map, then H1(M) is isomorphic to Z
2g , where

g is the genus of M . The Euler–Poincaré characteristic of a finite map M is defined
as χ (M) = v − e + f with v the number of vertices, e the number of edges, and f
the number of faces.

Theorem 1.2.2 For a finite closed map M of genus g it holds:

(i) if M is orientable, then χ (M) = 2 − 2g,
(ii) if M is non-orientable, then χ (M) = 2 − g.

This theorem is the main reason why we are able to use topology in dimension two
to derive non-trivial combinatorial results.

Theorem 1.2.3 Let G be a k-valent closed map on a surface M; then:

(i) the following Euler formula is valid:∑
j≥2

p j (2k − j(k − 2)) = 2kχ (M), (1.1)

where pi is the number of i-gonal faces.
(ii) If G has no 2-gonal faces, then k ≤ 5 if M is a sphere and k ≤ 6 if M is a torus.

Proof. (i) The relation 2e = kv allows us to rewrite the Euler–Poincaré characteristic
as:

χ (M) =
(

2

k
− 1

)
e +

∑
i≥2

pi .

Using that 2e = ∑
i≥2 i pi in the above equation, yields the result.

If j ≥ 3, then 2k − j(k −2) ≤ 0 for k ≥ 6 and 2k − j(k −2) < 0 for k ≥ 7. Assertion
(ii) is deduced by noticing that χ = 2, 0 for sphere, and torus, respectively. �

1.3 Representation of maps

A polytope P is the convex hull of a finite set of points in R
n; its dimension is

the dimension of the smallest affine space containing it. We assume it to be full-
dimensional. A linear inequality f (x) ≥ 0 is called valid if it holds for all x ∈ P .
A face of P is a set of the form {x ∈ P : f (x) = 0} with f ≥ 0 being a valid
inequality.
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10 Chemical Graphs, Polycycles, and Two-faced Maps

We will consider only 3-dimensional polytopes; they are called polyhedra. Their
0-dimensional faces are called vertices and the 2-dimensional faces are called
just faces. Two vertices are called adjacent if there exist an edge, i.e. a 1-dimensional
face containing both of them. The skeleton of a polyhedron is the graph formed by
all its vertices with two vertices being adjacent if they share an edge. This graph is
3-connected and admits a plane embedding.

Given a polyhedron P , its skeleton skel(P) is a planar graph. Furthermore, for
any face F of P , we can draw skel(P) on the plane so that F is the exterior face
of the plane graph. Those drawings are called Schlegel diagrams (see, for example,
[Zie95]). Steinitz proved that a finite graph is the skeleton of a polyhedron (and
so, an infinity of polyhedra with the same skeleton) if and only if it is planar and
3-connected (see [Ste22], [Zie95, Chapter 4] and [Grü03] for a clarification of the
history of this theorem).

A Riemann surface is a 2-dimensional compact differentiable surface, together
with an infinitesimal element of length (see textbooks on differential and Riemannian
geometry, for example, [Nak90]). The curvature K (x) at a point x is the coefficient
α in the expansion:

V ol(D(x, r )) = πr2 − αr4 + o(r4)

with D(x, r ) being the disc consisting of elements at distance at most r from x . The
curvature of a Riemann surface S satisfies the Gauss–Bonnet formula:∫

S
K (x)dx = 2π (1 − g).

All Riemann surfaces, considered in this section, will be of constant curvature. If
a surface has constant curvature, then, for any two points x and y of it, there exist
two neighborhoods Nx and Ny and a local isometry φ mapping x to y and Nx to
Ny . Hence, Riemann surfaces of constant curvature do not have local invariants and
the only invariants they have are global (see, for example, [Jos06]). For genus zero,
the curvature has positive integral. Up to rescaling, we can assume that this curva-
ture is 1. There is only one such Riemann surface: the sphere S

2. For genus 1, the
curvature has integral 0 and so it is 0. The Teichmüller space T1 has dimension 2,
which means that Riemann surfaces of genus 1 are parametrized by two real param-
eters. Geometrically, they are very easy to depict: take R

2 and quotient it by a group
v1Z + v2Z. For higher genus, the situation is much more complicated.

Given a map M , its circle-packing representation (see [Moh97]) is a set of disks
on a Riemann surface � of constant curvature, one disk D(v, rv) for each vertex v

of M , such that the following conditions are fulfilled:

1 the interior of disks are pairwise disjoint,
2 the disk D(u, ru), D(v, rv) touch if and only if uv is an edge of M .
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