

ROTATING RELATIVISTIC STARS

The masses of neutron stars are limited by an instability to gravitational collapse, and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to X-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume pulls together more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics, and astronomy with the first self-contained treatment of the structure, stability, and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results, and applications is accessible to readers who do not need the detailed derivations.

JOHN L. FRIEDMAN is a University Distinguished Professor at the University of Wisconsin–Milwaukee. A Fellow of the American Physical Society, he recently served as chair of its gravitational physics section. He has been on the editorial boards of Classical and Quantum Gravity and Physical Review D, and he was a divisional associate editor of Physical Review Letters. His awards include the Telegdi Prize and the Marc Perry Galler Award.

NIKOLAOS STERGIOULAS is an Associate Professor at the Aristotle University of Thessaloniki, Greece. He has a large number of publications in relativistic astrophysics and has released a widely used public-domain code for constructing numerical models of rotating relativistic stars. He has also served on the governing councils of the Hellenic Astronomical Society; the Hellenic Society on Relativity, Gravitation and Cosmology; and the Virgo Ego Scientific Forum.

CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General Editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

- S. J. Aarseth Gravitational N-Body Simulations: Tools and Algorithms † J. Ambjørn, B. Durhuus, and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach †
- A. M. Anile Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and Plasma Physics[†]
- J. A. de Azcárraga and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some $Applications \ \stackrel{ \smile }{in} \ Physics^{\dagger}$
- O. Babelon, D. Bernard, and M. Talon Introduction to Classical Integrable Systems[†]
- F. Bastianelli and P. van Nieuwenhuizen Path Integrals and Anomalies in Curved $Space^{\dagger}$ V. Belinski and E. Verdaguer Gravitational $Solitons^{\dagger}$
- J. Bernstein Kinetic Theory in the Expanding Universe[†]

- S. Bernstein Kinetic Theory in the Expanding Oniverse
 G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems
 N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space
 K. Bolejko, A. Krasiński, C. Hellaby, and M.-N. Célérier Structures in the Universe by Exact
 Methods: Formation, Evolution, Interactions
- D. M. Brink Semi-Classical Methods for Nucleus-Nucleus Scattering[†]
- M. Burgess Classical Covariant Fields[†]
- E. A. Calzetta and B.-L. B. Hu Nonequilibrium Quantum Field Theory
- S. Carlip Quantum Gravity in 2+1 Dimensions
- P. Cartier and C. DeWitt-Morette Functional Integration: Action and Symmetries †
- P. D. B. Collins An Introduction to Regge Theory and High Energy Physics[†]
- M. Creutz Quarks, Gluons and Lattices
- P. D. D'Eath Supersymmetric Quantum Cosmology[†]
- F. de Felice and D. Bini Classical Measurements in Curved Space-Times F. de Felice and C. J. S Clarke Relativity on Curved Manifolds B. DeWitt Supermanifolds, 2^{nd} edition

- P. G. O Freund Introduction to Supersymmetry[†]
- F. G. Friedlander The Wave Equation on a Curved Space-Time[†]
- J. L. Friedman and N. Stergioulas Rotating Relativistic Stars
- Y. Frishman and J. Sonnenschein Non-Perturbative Field Theory: From Two-Dimensional
- Conformal Field Theory to QCD in Four Dimensions
 J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists[†]
- J. A. Fuchs Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in $Conformal\ Field\ Theory^\dagger$

- Y. Fujii and K. Maeda The Scalar-Tensor Theory of Gravitation[†]
 J. A, H. Futterman, F. A. Handler, and R. A. Matzner Scattering from Black Holes[†]
 A. S. Galperin, E. A. Ivanov, V. I. Orievetsky, and E. S. Sokatchev Harmonic Superspace[†]
 R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity[†]
 T. Gannon Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and $Physics^{\dagger}$

- M. Göckeler and T. Schücker Differential Geometry, Gauge Theories and Gravity[†]
 C. Gómez, M. Ruiz-Altaba, and G. Sierra Quantum Groups in Two-Dimensional Physics[†]
 M. B. Green, J. H. Schwarz, and E. Witten Superstring Theory Volume 1: Introduction[†]
 M. B. Green, J. H. Schwarz, and E. Witten Superstring Theory Volume 2: Loop Amplitudes,
 Anomalies and Phenomenology[†]
- V. N. Gribov The Theory of Complex Angular Momenta: Gribov Lectures on Theoretical Physics[†]
- J. B. Griffiths and J. Podolský Exact Space-Times in Einstein's General Relativity S. W. Hawking and G. F. R. Ellis The Large Scale Structure of Space-Time

- F. Iachello and A. Arima The Interacting Boson Model
 F. Iachello and P. van Isacker The Interacting Boson-Fermion Model
 C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 1: From Brownian Motion to Renormalization and Lattice Gauge Theory
- C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 2: Strong Coupling, Monte Carlo Methods, Conformal Field Theory and Random Systems[†]
- C. V. Johnson D-Branes
- P. S. Joshi Gravitational Collapse and Spacetime Singularities[†]
- J. I. Kapusta and C. Gale Finite-Temperature Field Theory: Principles and Applications, 2nd edition
- V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin Quantum Inverse Scattering Method and
- Correlation Functions[†]
 M. Le Bellac Thermal Field Theory[†]

[†] Issued as a paperback

- Y. Makeenko Methods of Contemporary Gauge $Theory^{\dagger}$
- N. Manton and P. Sutcliffe Topological Solutions † N. H. March Liquid Metals: Concepts and Theory †
- I. Montvay and G. Münster Quantum Fields on a Lattice[†]
- L. O'Raifeartaigh Group Structure of Gauge Theories
- T. Ortin Gravity and Strings
- A. M. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization[†] L. Parker and D. J. Toms Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity
- R. Penrose and W. Rindler Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields[†]
- R. Penrose and W. Rindler Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry
- J. Polchinski String Theory Volume 1: An Introduction to the Bosonic String[†] J. Polchinski String Theory Volume 2: Superstring Theory and Beyond[†]
- J. C. Polkinghorne Models of High Energy Processes[†]
- V. N. Popov Functional Integrals and Collective Excitations[†]
 L. V. Prokhorov and S. V. Shabanov Hamiltonian Mechanics of Gauge Systems
 R. J. Rivers Path Integral Methods in Quantum Field Theory[†]
 R. G. Roberts The Structure of the Proton: Deep Inelastic Scattering[†]
 C. Rovelli Quantum Gravity[†]

- W. C. Saslaw Gravitational Physics of Stellar and Galactic Systems[†]

- W. C. Sasiaw Gratitational Trysics of Section and Gratievite Systems
 R. N. Sen Causality, Measurement Theory and the Differentiable Structure of Space-Time
 M. Shifman and A. Yung Supersymmetric Solitons
 H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt Exact Solutions of Einstein's Field Equations, 2nd edition[†]
- J. Stewart Advanced General Relativity[†]
- J. C. Taylor Gauge Theories of Weak Interactions †
- T. Thiemann $Modern\ Canonical\ Quantum\ General\ Relativity^\dagger$
- D. J. Toms The Schwinger Action Principle and Effective Action[†]
 A. Vilenkin and E. P. S. Shellard Cosmic Strings and Other Topological Defects[†]
 R. S. Ward and R. O. Wells, Jr. Twistor Geometry and Field Theory[†]
 J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics[†]

[†] Issued as a paperback

Rotating Relativistic Stars

JOHN L. FRIEDMAN

University of Wisconsin, Milwaukee

NIKOLAOS STERGIOULAS

 $Aristotle\ University\ of\ Thessaloniki$

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

 $www.cambridge.org\\ Information on this title: www.cambridge.org/9780521872546$

© John L. Friedman and Nikolaos Stergioulas 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2013

A catalogue record for this publication is available from the British Library

 ${\it Library~of~Congress~Cataloging-in-Publication~data} \\ {\it Friedman,~John~L.,~1945-}$

Rotating relativistic stars / John L. Friedman, University of Wisconsin, Milwaukee and Nikolaos Stergioulas.

pages cm. – (Cambridge monographs on mathematical physics)
Includes bibliographical references and index.

ISBN 978-0-521-87254-6 (hardback)

1. Neutron stars. 2. Stellar oscillations. 3. Gravitational waves. 4. Stars – Rotation.

I. Stergioulas, Nikolaos, 1967— II. Title.

QB843.N4F75 2013

523.8'874-dc23 2012036771

ISBN 978-0-521-87254-6 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Paula

To my parents, Christoforos and Evangelia

Contents

Prej	ace	page xv
List	$of\ symbols$	xvii
Con	ventions, notation, and mathematical preliminaries	xxiii
1	Stationary, axisymmetric equilibria	1
1.1	Perfect fluids	2
1.2	The spacetime of a rotating star	10
1.3	Einstein's field equation	17
1.4	Hydrostationary equilibrium equation	18
1.5	The Poincaré-Wavre theorem	19
1.6	Equation of state	21
1.7	Rotation law	26
1.8	Equilibrium quantities	27
2	3+1 split, action, Lagrangian, and Hamiltonian formalisms	31
2.1	The 3+1 split	31
2.2	Action for perfect-fluid spacetimes	37
	2.2.1 Summary of results	37
	2.2.2 Lagrangian formalism and Lagrangian displacements	39
	2.2.3 Gravitational action	45
	2.2.4 Action for the Einstein-Euler system	47
	2.2.5 Hamiltonian formalism	47
2.3	Gauge freedom and trivial displacements	53
2.4	Symmetry under trivial displacements implies	
	conservation of circulation	56
3	Asymptotics, virial identities, and nonaxisymmetric	
	equilibria	59
3.1	ADM mass and angular momentum	59
3.2	Asymptotic behavior of equilibria	64
	3.2.1 Asymptotic behavior of the metric	64
3.3	Virial identities	71
	3.3.1 Virial relation for stationary spacetimes	73
	3.3.2 Virial theorem associated with a pseudotensor	75
	3.3.3 2D virial identity	77

 ${\bf x}$ Contents

3.4	ADM ma	ss = Komar mass	77
3.5	First law	of thermodynamics for relativistic stars	80
3.6	Nonaxisy	mmetric equilibria	85
	3.6.1 De	dekind-like configurations	86
	3.6.2 Ja	cobi-like configurations and helical symmetry	94
4	Numerio	cal schemes	98
4.1	The KEH	scheme	99
	4.1.1 Fig	eld equation	99
	4.1.2 Int	segral representation	101
	4.1.3 Ite	rative procedure	102
	4.1.4 Th	e CST compactification	103
	4.1.5 Nu	imerical issues	103
4.2	Butterwo	rth and Ipser (BI)	104
4.3	Bonazzola	a et al. and Lorene/rotstar	105
4.4	Ansorg et	al. (AKM)	106
4.5	Direct co	mparison of numerical codes	106
5	Equilibr	ium models	109
5.1	Models in	uniform rotation	109
	5.1.1 Bu	lk properties	109
	5.1.2 See	quences of equilibrium models	111
	5.1.3 En	apprical relations for the mass-shedding limit	116
	5.1.4 Up	oper limits on mass and rotation: Theory versus	
	ob	servation	117
	5.1.5 Ma	aximum mass set by causality	120
	5.1.6 Mi	nimum period set by causality	122
	5.1.7 Mo	oment of inertia and ellipticity	125
	5.1.8 Ro	tating strange quark stars	126
5.2	Proto-ne	utron-star models	127
5.3	Magnetiz	ed equilibrium models	129
6	Approxi	mation methods for equilibria	135
6.1	Slow-rota	tion approximation	135
	6.1.1 Th	ne nonrotating limit	135
	6.1.2 Sta	ationary axisymmetric spacetime in	
		asi-Schwarzschild coordinates	136
	_	ow-rotation expansion to $O(\Omega)$	136
		ow-rotation expansion to $O(\Omega^2)$	137
		ysical properties in the slow-rotation approximation	141
6.2		onformal flatness and quasiequilibrium approximations	143
	-	atial conformal flatness: The IWM-CFC approximation	143
		otational flow and helical symmetry	146

	Contents	xi
	6.2.3 Waveless formulation for binary systems:	
	Beyond conformal flatness	148
6.3	Exact vacuum solutions	151
	6.3.1 The 3-parameter Manko et al. solution	152
	6.3.2 Other exact vacuum solutions	156
7	Perturbation theory of relativistic fluids	157
7.1	The perturbed Einstein-Euler equations	157
7.2	An action for the perturbation equations	163
7.3	Energy and angular momentum	166
7.4	Canonical displacements and the symplectic form	171
	7.4.1 The symplectic form	171
	7.4.2 Perturbations that preserve circulation and canonical	
	displacements	173
	7.4.3 Existence of canonical displacements	174
	7.4.4 Canonical energy in a rotating frame	177
	7.4.5 A stability criterion	178
7.5	Perturbations of spherical stars	179
	7.5.1 Spherical (radial) perturbations	179
7 C	7.5.2 Nonradial perturbations	184
7.6	Multipole decomposition of energy radiated in gravitational waves	$\frac{202}{203}$
7.7	Eulerian perturbations	203
8	Quasinormal modes	206
8.1	Quasinormal modes	206
8.2	Frequency of short-wavelength p- and g-modes	211
8.3	Effect of rotation on quasinormal modes	213
8.4	Computational methods	214
	8.4.1 Nonrotating stars	214
0.5	8.4.2 Rotating stars	$215 \\ 219$
8.5	Axisymmetric modes	$\begin{array}{c} 219 \\ 222 \end{array}$
8.6	Nonaxisymmetric modes $8.6.1$ f - and p -modes	$\frac{222}{222}$
	· -	$\frac{222}{225}$
	8.6.2 Rotationally restored modes: r-modes and inertial modes 8.6.3 g-modes	$\frac{225}{235}$
	8.6.4 Crustal modes	$\frac{235}{237}$
	8.6.5 Alfvén modes	$\frac{237}{237}$
8.7	Neutral $l = m$ f-modes	$\frac{237}{238}$
0.1	8.7.1 Numerical method	$\frac{238}{238}$
	8.7.2 A variational principle	$\frac{236}{244}$
	8.7.3 Neutral-mode configurations	247
	comparations	211
9	Stellar stability	250
9.1	Introduction	250

xii	Contents	
9.2	Axisymmetric stability and turning points	251
	9.2.1 Turning-point theorem	253
	9.2.2 Extensions and applications	259
	9.2.3 Dynamical instability to collapse	259
9.3	Stability to convection (local stability)	261
	9.3.1 Canonical energy of local perturbations	264
	9.3.2 Convective instability due to differential rotation:	
	The Solberg criterion	267
9.4	Instability sets in through zero-frequency modes	271
9.5	Nonaxisymmetric stability	274
	9.5.1 Generic instability	277
9.6	Implications of the CFS instability	282
	9.6.1 Instability of polar modes	283
	9.6.2 Instability of axial modes	292
9.7	Viscosity-driven secular instability	299
9.8	Dynamical and shear instabilities	301
10	Nonlinear dynamics of rotating relativistic stars	304
10.1	Numerical methods for nonlinear simulations	304
	10.1.1 Evolution of the equations of ideal hydrodynamics	304
	10.1.2 Spacetime evolution	307
10.2	Stable equilibrium	312
10.3	Nonlinear pulsations	314
10.4	Nonlinear development of rotational instabilities	317
	10.4.1 Dynamical instabilities in rapidly rotating stars	318
	10.4.2 Shear instabilities in differentially rotating stars	319
	10.4.3 Secular instabilities	320
10.5	Damping of nonlinear oscillations due to formation of shocks	326
10.6	Mass-shedding-induced damping	328
	Postbounce oscillations	330
	Collapse of rotating relativistic stars to Kerr black holes	331
10.9	Collapse of rotating supermassive stars	340
	10.9.1 Numerical setup	341
	10.9.2 Dynamical evolution of the reference model	342
	10.9.3 Sequence of $\Gamma = 4/3$ polytropes with fixed central rest-mass	
	density	344
App	endix A: Lie derivatives, forms, densities, and integration	349
A.1	Lie derivatives	349
A.2	Integration, forms, and densities	355
	A.2.1 Introduction to integration on manifolds	355
	A.2.2 Forms and densities	357
A.3	Gauss's theorem and Stokes's theorem	359
	A.3.1 Integrals on a submanifold	360

	Contents	xiii
	A.3.2 Stokes's theorem	366
	A.3.3 Diffeomorphism invariance	368
App	pendix B: The Newtonian limit of the two-pot	ential
	formalism	369
B.1	Introduction	369
B.2	The two-potential formalism	370
	B.2.1 The numerical method of solution	373
Bibl	liography	375
Inda	or	405

Preface

The masses of neutron stars are limited by an instability to collapse, and an instability driven by gravitational waves may limit their spin. Their oscillations are relevant to X-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume pulls together more than 40 years of research to provide graduate students and researchers in astrophysics, gravitational physics, and astronomy with a self-contained treatment of the structure, stability, and oscillations of rotating relativistic stars. Numerical and analytic work are both essential to the subject, and their interplay is emphasized in our treatment.

The book is intended for more than one audience: Readers who need to work through mathematical details of stellar perturbations and stability theory will find them here, in derivations and proofs of principal results. More commonly, a reader working in relativistic astrophysics will want the principal results of the theory but will need only a few of the derivations. The text is also designed to provide a coherent treatment for this second audience, with an exposition of the results preceding the more mathematical derivations. Although our primary concern is with rotating stars, we begin our discussion of oscillations and stability with spherical stars for completeness and to make the presentation accessible to readers with no previous knowledge of relativistic perturbation theory.

Those intending to work through the mathematical derivations should have a background comparable to a semester of gravitational physics at the level of MTW [480] or Wald [715]. The rest of the book should be accessible to students who have mastered Schutz's First Course in General Relativity [595], supplemented by the appendices here on Lie derivatives and integration.

We are indebted to all our long-term collaborators in a large number of joint publications, the main results of which are presented in this book. We are especially grateful for their contributions in several research areas that are presented here in an abridged form.

A number of colleagues and collaborators have read parts of the manuscript, made suggestions, answered our questions, and caught errors. For this we thank Marek Abramowicz, James Bardeen, Emanuele Berti, Demian Cho, Piotr Chrusciel, Matthew Glenz, Eric Gourgoulhon, Stephen Green, Brennan Hughey, Panagiotis Iosif, James Ipser, David Kaplan, Kostas Kokkotas, Lee Lindblom, Charalampos Markakis, Ben Owen, Andrea Passamonti, Eric Poisson, Bernard Schutz, and Kōji Uryū. We are indebted to Kate Valerius for typing parts of the manuscript. We thank the editors at Cambridge University Press for their support and encouragement and Aptara, Inc., for their careful typesetting. Finally, we would like to thank our families for their patience and support during the time of writing of this book.

List of symbols

This is a global glossary, restricted to symbols used in more than one place in the text. Local uses of symbols that appear within a page or two of their definition are in general not listed here. For example, h is used globally to mean specific relativistic enthalpy, and that definition is listed here; h is also used on a single page to mean the amplitude of a gravitational wave, and that local definition is not listed.

A	a generic constant
$A (A_{\alpha})$	Schwarzschild discriminant (vector version)
A_{lpha}	electromagnetic vector potential
A_{ab}	trace-free part of extrinsic curvature
$egin{array}{l} A_{ab} \ ilde{A}_{ab} \end{array}$	related by conformal factor to A_{ab}
$\mathcal{A},\mathcal{A}^a$	generic densities
a	constant in asymptotic metric of rotating star
	J/M in the Kerr geometry
B	metric potential of rotating star
B^{lpha}	magnetic field
$\mathcal B$	bag constant in quark interactions
b	constant in asymptotic form of metric
C	generic constant
C_{μ}	gravitational constraint
c	speed of light
$c_{ m s}$	speed of sound
$c(\tau), c(\lambda)$	path in spacetime
D_{lm}	mass multipole moment
$egin{aligned} D_a \ ilde{D}_a \end{aligned}$	covariant derivative of spatial metric γ_{ab}
$ ilde{D}_a$	covariant derivative of spatial metric $\tilde{\gamma}_{ab}$
d	exterior derivative
$d\sigma_{lpha},d\sigma_{a}$	$dS_{lpha}/\sqrt{ g }, dS_a/\sqrt{\gamma}$
dl	element of proper length
dS_{α}, dS_{a}	elements of (hyper)surface area
dV, d^4V	3- and 4-dimensional volume elements
E	energy
E_c	canonical energy
$E_{c,r}$	canonical energy in rotating frame
$E_{\alpha\beta}$	$G_{lphaeta}-8\pi T_{lphaeta}$

xviii	$List\ of\ symbols$
E_{ab}	spatial projection of $E_{\alpha\beta}$
E^{α}	electric field
${\cal E}$	injection energy
e	specific internal energy (per unit baryon mass)
$\mathbf{e}_{\hat{\mu}}$	contravariant basis vector of ZAMO
e_{ab}	metric on a sphere of radius r
F	the scalar $u^t u_\phi$
	a generic function
${\cal F}$	function in Eulerian perturbation theory
$F^{lphaeta}$	electromagnetic field tensor (Faraday tensor)
f	a generic function
f_{lpha}	4-force per unit volume
G	Newton's constant
	occasionally a generic function
$G_{lphaeta}$	Einstein tensor
$G_{lphaeta\gamma\delta}$	metric expression appearing in $\delta(G^{\alpha\beta}\sqrt{ g })$
g	specific Gibbs free energy
	determinant of spacetime metric
$g_{lphaeta}$	spacetime metric
H	thermodynamic quantity, $\ln h$ for homentropic fluid
	metric potential in slow-rotation approximation
\mathcal{H}	Hamiltonian density
H_0, H_1, H_2	potentials of polar metric perturbation of spherical star
h	specific enthalpy (per unit baryon mass)
$h_{lphaeta}$	metric perturbation: $\delta g_{\alpha\beta}$
h_0, h_1, h_2	potentials of axial metric perturbation of spherical star
I	moment of inertia
\mathcal{I}	action null infinity (scri)
J	angular momentum
<i>u</i>	Jacobian of a diffeomorphism
J_c	canonical angular momentum
$J_{c,r}$	canonical angular momentum in rotating frame
J_{lm}	current multipole moment
J^{lpha}	generic current
j	specific angular momentum of fluid
	J/M^2 , a dimensionless measure of angular momentum
j	$\rho\sqrt{ g }u^t$
j_a	momentum density of fluid
	conduction current for heat flow
\mathfrak{j}^{α}	baryon current density
K	polytropic constant
	trace $K_a{}^a$ of extrinsic curvature
K_{ab}	extrinsic curvature

$List\ of\ symbols$

xix

k	generic constant
70	potential of a perturbed metric
k^{lpha}	helical Killing vector: $t^{\alpha} + \Omega \phi^{\alpha}$
$\stackrel{\sim}{L}$	angular momentum of free particle
L	linear operator in perturbation theory
$\mathcal L$	Lie-derivative operator
$\stackrel{\sim}{\mathcal{L}}$	the operator $ g ^{-1/2}\mathcal{L} g ^{1/2}$
\mathcal{L}	Lagrangian density
$\frac{\mathcal{L}}{l}$	· ·
t.	label of rotation group representation, as in Y_{lm}
M	proper length gravitational mass
	ADM mass
$M_{ m ADM} \ M_{ m K}$	Komar mass
M_0	baryon mass of star
\mathcal{M}	manifold of fluid trajectories angular eigenvalue, as in $e^{im\phi}$
m	angular eigenvalue, as in e^{-irr} mass within Schwarzschild radial coordinate r
m(r)	
m_B	fiducial baryon mass: mass per nucleon of ¹² C
m_e, m_s	electron mass, strange quark mass
m_n	complex multipole moments
m_0, m_2	potentials of a slowly rotating star
N	polytropic index
NT	baryon number
N	Brunt-Väisälä frequency
n	baryon number density
	neutron
	generic integer
n_e	electron number density
n^{α}	future-pointing unit normal to hypersurface
O	an order symbol
0	an order symbol
P	point of spacetime
	period of rotation
Ø.	point along a sequence of stars
${\cal P}$	a parity transformation (diffeomorphism)
p	pressure
Q	scalar quadrupole moment
Q	set of variables of perfect-fluid spacetime
Q_{ab}	tensor in Newtonian perturbation theory
q^{lpha}_{eta}	heat-flow vector
$q_{lpha}^{\;\;eta}$	projection tensor orthogonal to u^{α}
R	circumferential equatorial radius of star
4 P	3-dimensional Ricci scalar
4R	4-dimensional Ricci scalar

XX

$List\ of\ symbols$

D D	4 and 2 dimensional Dissi tengana
$egin{aligned} R_{lphaeta},R_{ab}\ ilde{R}_{ab} \end{aligned}$	4- and 3-dimensional Ricci tensors
	Ricci tensor of $\tilde{\gamma}_{ab}$
r	radial coordinate
\mathbf{r}	position vector (Newtonian)
r_c	circumferential radial coordinate
S	2-dimensional surface
S^{ab}	stress tensor: spatial projection of $T^{\alpha\beta}$
s	specific entropy (per unit baryon mass)
s^{lpha}	entropy current
T	temperature
	rotational kinetic energy of rotating star
T_s	superfluid transition temperature
$T^{lphaeta}$	stress-energy tensor
$T^{a_1\cdots a_m}_{\ b_1\cdots b_n}$	a generic tensor
\mathcal{T}	a subspace of the space of trivial displacements
t	time coordinate
t^{lpha}	time-translation symmetry vector
U	effective potential in two-potential formalism
$U^{lphaeta\gamma\delta}$	tensor in Lagrangian perturbation theory
u	null coordinate
u^{lpha}	4-velocity of fluid or particle
$V^{lphaeta\gamma\delta}$	tensor in Lagrangian perturbation theory
V	3-dimensional region
v	magnitude of 3-velocity measured by a ZAMO
	null coordinate
\mathbf{v}, v^a	Newtonian fluid velocity
v^{lpha}	spatial part of fluid velocity u^{α}
	generic vector
W	gravitational potential energy of star
	symplectic structure (form) of perturbation
	Lorentz factor
$W^{lphaeta\gamma\delta}$	tensor in expression for $\Delta(T^{\alpha\beta}\sqrt{ g })$
\overline{w}	function occurring in Manko formalism
	function occurring in Eulerian perturbation theory
w^{lpha}	unnormalized tangent vector to fluid trajectory
w	the vector hu^{α}
	generic vector
X	generic variable
x	coordinate
x^{μ}	spacetime coordinate
	proton fraction
$egin{array}{c} x_p \ Y_k \end{array}$	fractional number density of k th species of particle
	function in Eulerian perturbation theory
y	runction in Eulerian perturbation theory

coordinate

$List\ of\ symbols$

xxi

Z	Zerilli function
L	redshift
z	coordinate
α	lapse
	imaginary part of mode frequency
eta^a	shift vector
Γ	$d \log p / d \log \rho$; polytropic exponent
Γ_1	adiabatic index
$\Gamma^{\lambda}{}_{\mu u}$	Christoffel symbol
γ	determinant of 3-metric
	Lorentz factor $1/\sqrt{1-v^2}$
γ_{ab}	3-metric
$ ilde{\gamma}_{ab}$	conformal 3-metric
$\gamma_a{}^{lpha}$	pullback of vectors on M to vectors on Σ
$rac{\Delta}{oldsymbol{\Delta}}$	Lagrangian change
	the operator $ g ^{-1/2}\Delta g ^{1/2}$
δ	Eulerian change
δ	the operator $ g ^{-1/2}\delta g ^{1/2}$
ϵ,ϵ_c	energy density, central energy density
$\epsilon_{lphaeta\gamma\delta},\epsilon_{abc}$	normalized totally antisymmetric tensors
ϵ_{ab}	normalized antisymmetric tensor on sphere
ζ ζ ζ^{lpha},ζ^{a} ζ^{a}	metric potential of rotating star
ζ	Newtonian vorticity vector
$\zeta^{\alpha}, \zeta^{a}$	generator of gauge transformation
ζ^a	generic vector field
η	coefficient of viscosity
$\eta_{lphaeta}$	flat Minkowski metric
η_{ab}	flat spatial metric
η^{lpha}	trivial Lagrangian displacement
Θ	step function
$\mathbf{\Theta}^{lpha}$	vector density from variation of action
heta	spatial divergence of u^{α}
	angular coordinate
κ	coefficient of heat conductivity
	a generic constant
Λ	the Λ hyperon
λ	metric potential of spherical star
	parameter along sequence of stars
μ	metric potential of rotating star
ν	metric potential of rotating or spherical star
ξ^a	Lagrangian displacement
П	the internal energy of a Newtonian star
Π_{α}	momentum conjugate to ξ^{α} in perturbed fluid

> xxii List of symbols Π_a momentum density of fluid trace, $\pi_a{}^a$ $\pi^{\alpha\beta}$ momentum density conjugate to perturbed metric $h_{\alpha\beta}$ $\pi^{a\,b}$ momentum density conjugate to spatial metric γ_{ab} π^0, π^{\pm} pions cylindrical coordinate radius \overline{w} baryon mass density ρ \sum 3-dimensional hypersurface the Σ hyperon the complex frequency of a mode σ shear tensor $\sigma_{\alpha\beta}$ τ proper time along a trajectory $au_{
> m b}$ bulk-viscosity damping time gravitational wave damping time or growth time τ_{GW} $\tau_{
> m s}$ shear-viscosity damping time Υ scalar occurring in expression for fluid velocity u^{α} Φ metric potential of a spherical star Newtonian gravitational potential Φ^I one of a set $\{\phi^I\}$ of fields on spacetime angular coordinate ϕ potential in conformal factor $e^{4\phi}$ of 3-metric ϕ^{α} rotational symmetry vector diffeomorphisms describing fluid configuration χ,χ_{s} Ψ velocity potential of irrotational fluid ψ diffeomorphism metric potential of rotating star Ω angular velocity of rotating star Ω_K Keplerian angular velocity frame-dragging potential of rotating star ω $\bar{\omega}$ $\omega - \Omega$, used in slow-rotation formalism vorticity tensor $\omega_{\alpha\beta}$ real mode frequency measured by inertial observer ω_i real mode frequency measured by rotating observer ω_r ω^{α} vorticity vector $oldsymbol{\omega}^{\hat{\mu}}$ covariant basis vector of ZAMO ∇_{α} covariant derivative operator of spacetime metric $g_{\alpha\beta}$ V_{α} covariant derivative operator of flat metric $\eta_{\alpha\beta}$ ∇_a , ∇ covariant derivative operator of flat spatial metric η_{ab} ∂_{μ} contravariant basis vector associated with coordinate x^{μ}

Conventions, notation, and mathematical preliminaries

Units, metric and physical constants

Throughout the book, gravitational units, with G=c=1, will be adopted in writing the equations governing stellar structure and dynamics, whereas numerical properties of stellar models will be listed in cgs units, unless otherwise noted. We use the conventions of Misner, Thorne, and Wheeler [480] for the signature of the spacetime metric (-+++) and for signs of the curvature tensor and its contractions. Spacetime indices will be Greek, α , β ,..., whereas spatial indices will be Latin a,b,\ldots (Readers familiar with abstract indices can regard indices early in the alphabet as abstract, whereas indices μ , ν , λ and i,j,k will be concrete, taking values $\mu=0,1,2,3,\ i=1,2,3$.) Corresponding to a choice of coordinates, t,r,θ,ϕ , a vector u^{α} has components u^{t},\ldots,u^{ϕ} ; its components along an orthonormal frame, $\{\mathbf{e}_{\hat{0}},\ldots,\mathbf{e}_{\hat{3}}\}$, will be written $\{u^{\hat{0}},\ldots,u^{\hat{3}}\}$. Parentheses enclosing a set of indices indicate symmetrization, and square brackets indicate antisymmetrization.

Numbers that rely on physical constants are based on the values $c = 2.9979 \times 10^{10} \ \rm cm \ s^{-1}, \ G = 6.670 \times 10^{-8} \ g^{-1} \rm cm^3 s^{-2}, \ \hbar = 1.0545 \times 10^{-27} \ g \ cm^2 s^{-1}, \ baryon mass <math>m_B = 1.659 \times 10^{-24} \ g$, and $M_{\odot} = 1.989 \times 10^{33} \ g = 1.477 \ km$.

Derivatives and integrals

The covariant derivative operator of the spacetime metric $g_{\alpha\beta}$ will be written ∇_{α} , and the partial derivative of a scalar f with respect to one of the coordinates – say r – will be written $\partial_r f$ or $f_{,r}$. Lie derivatives along a vector u^{α} will be denoted by $\mathcal{L}_{\mathbf{u}}$. The Lie derivative of an arbitrary tensor $T^{a\cdots b}{}_{c\cdots d}$ is

$$\mathcal{L}_{\mathbf{u}} T^{a \cdots b}{}_{c \cdots d} = u^e \nabla_e T^{a \cdots b}{}_{c \cdots d} - T^{e \cdots b}{}_{c \cdots d} \nabla_e u^a - \cdots - T^{a \cdots e}{}_{c \cdots d} \nabla_e u^b$$

$$+ T^{a \cdots b}{}_{e \cdots d} \nabla_c u^e + \cdots + T^{a \cdots b}{}_{c \cdots e} \nabla_d u^e.$$
 (1)

Our notation for integrals is as follows. We denote by d^4V the spacetime volume element. In a chart $\{x^0, x^1, x^2, x^3\}$, the notation means

$$d^4V = \epsilon_{0123} dx^0 dx^1 dx^2 dx^3 = \sqrt{|g|} d^4x, \tag{2}$$

where g is the determinant of the matrix $||g_{\mu\nu}||$. Gauss's theorem (presented in Section A.3 of the Appendix) has the form

$$\int_{\Omega} \nabla_{\alpha} A^{\alpha} d^4 V = \int_{\partial \Omega} A^{\alpha} dS_{\alpha}, \tag{3}$$

xxiv Conventions, notation, and mathematical preliminaries

with $\partial\Omega$ the boundary of the region Ω . In a chart (u, x^1, x^2, x^3) for which V is a surface of constant u, $dS_{\alpha} = \sqrt{|g|} \nabla_{\alpha} u d^3 x$, and

$$\int_{V} A^{\alpha} dS_{\alpha} = \int_{V} A^{u} \sqrt{|g|} d^{3}x. \tag{4}$$

If V is nowhere null, one can define a unit normal,

$$\widehat{n}_{\alpha} = \frac{\nabla_{\alpha} u}{\left|\nabla_{\beta} u \nabla^{\beta} u\right|^{1/2}} \,, \tag{5}$$

and write

$$dS_{\alpha} = \widehat{n}_{\alpha} dV, \tag{6}$$

where

$$dV = \sqrt{|^3g|} \ d^3x,\tag{7}$$

where 3g is the determinant of the 3-metric induced on the surface V. But Gauss's theorem has the form (3) for any 3-surface S, bounding a 4-dimensional region \mathcal{R} , regardless of whether S is timelike, spacelike, or null.¹

Similarly, if $F^{\alpha\beta}$ is an antisymmetric tensor, its integral over a 2-surface S of constant coordinates u and v is written

$$\int_{S} F^{\alpha\beta} dS_{\alpha\beta} = \int_{S} F^{uv} \sqrt{|g|} d^{2}x, \tag{8}$$

and a corresponding generalized Gauss's theorem has the form

$$\int_{V} \nabla_{\beta} F^{\alpha\beta} dS_{\alpha} = \int_{\partial V} F^{\alpha\beta} dS_{\alpha\beta}.$$
 (9)

If n_{α} and \tilde{n}_{α} are orthogonal unit normals to the surface S, for which $(\mathbf{n}, \tilde{\mathbf{n}}, \partial_2, \partial_3)$ is positively oriented, then $dS_{\alpha\beta} = n_{[\alpha} \tilde{n}_{\beta]} \sqrt{|^2 g|} d^2 x$.

Asymptotic notation: O and o

We will use the symbols O(x) and o(x) to describe asymptotic behavior of functions. For a function f(x), f = O(x) if there is a constant C for which |f/x| < C, for sufficiently small |x|; f = o(x) if $\lim_{x\to 0} |f/x| = 0$. For example, if A is constant, $A/r = O(r^{-1})$, and $A/r^{3/2} = o(r^{-1})$.

¹ Note that in the text, n_{α} denotes the *future* pointing unit normal to a t= constant hypersurface, $n_{\alpha}=-\nabla_{\alpha}t/|\nabla_{\beta}t\nabla^{\beta}t|^{1/2}$. In order that, for example, $\int \rho u^{\alpha}dS_{\alpha}$, be positive on a t= constant surface, one must use $dS_{\alpha}=\nabla_{\alpha}t\sqrt{|g|}d^{3}x=\widehat{n}_{\alpha}dV=-n_{\alpha}dV$.