
Cambridge University Press & Assessment
978-0-521-87254-6 — Rotating Relativistic Stars
John L. Friedman , Nikolaos Stergioulas
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Stationary, axisymmetric equilibria

The Newtonian approximation describes to extraordinarily high precision the grav-

itational field of low-mass stars over the course of their evolution, from the insta-

bility to collapse that triggers their formation to their death as white dwarfs. In a

high-mass star, however, when the nuclear reactions that halted its initial collapse

ultimately die out, the core’s renewed collapse leads either to a star above nuclear

density or to a black hole at whose center is a speck that, at least momentarily, is

vastly beyond any known density. In both of these final states of stellar evolution,

general relativity plays a fundamental role. The relativistic stars of nature have a

complex composition, spanning fifteen orders of magnitude in density. Thought to

consist primarily of a gas of neutrons with a gradually varying density of free pro-

tons, electrons, and muons, they are surrounded by a crust of ordinary matter, and

their cores may hold hyperons, pion or kaon condensates, or possibly free quarks.

In fact, our uncertainty about the behavior of matter above nuclear density is (in

2012) great enough to allow what we call neutron stars to be strange-quark stars,

collections of up, down, and strange quarks surrounded by a thin normal crust.

In the conventional neutron-star model, a much thicker, 1-km crust surrounds an

interior in which neutrons and protons form a two-component superfluid. High mag-

netic fields, whose strength in some cases appears to exceed 1014 G, are observed

and thought to extend in quantized flux tubes through the superfluid interior. The

angular velocities of observed millisecond pulsars range up to 716 Hz, and the vor-

ticity of their velocity fields is similarly thought to be confined, in the neutron stars’

interiors, to quantized tubes.

Departures from local isotropy are associated with the crust, with the vortex

and magnetic flux tubes, and with heat flow and viscosity. Nevertheless, a neu-

tron star in equilibrium is accurately approximated by a stationary self-gravitating

perfect fluid, its structure determined by a balance among its intense gravity, the

pressure of its degenerate particles, and its rotation. In particular, departures

from perfect fluid equilibrium due to a solid crust are expected to be smaller

than ∼10−3 , corresponding to the maximum strain that an electromagnetic lat-

tice can support [142]; this estimate is supported by observations of pulsar glitches,

which are consistent with departures from a perfect fluid equilibrium of order 10−5

(see [235]).

Similarly, on scales of meters or larger, a single rotational velocity field uα

describes the averaged superfluid motion [58, 639, 424]. The error in computing
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2 Stationary, axisymmetric equilibria

the gravitational field is much smaller than errors in the fluid model, because the

characteristic length over which a potential varies is much larger than the distance

between vortices. Although the assumption of a perfect fluid is adequate for describ-

ing equilibrium configurations, studies of neutron-star dynamics – of formation,

oscillations, and stability, and of the interaction of binaries during and just before

merger – require a more detailed knowledge of the stars’ microphysics.

1.1 Perfect fluids

The stress-energy tensor. A perfect fluid is a model for a large assembly of particles

in which a continuous energy density ǫ can reasonably describe the macroscopic

distribution of mass. One assumes that the microscopic particles collide frequently

enough that their mean free path is short compared with the scale on which the

density changes, so that the collisions enforce a local thermodynamic equilibrium.

In particular, one assumes that a mean velocity field uα and a mean stress-energy

tensor T αβ can be defined in boxes – fluid elements – that are small compared

to the macroscopic length scale but large compared to the mean free path. One

also assumes that on scales large compared to the size of the fluid elements, the

4-velocity and thermodynamic quantities can be accurately described by continuous

fields. An observer moving with the average velocity uα of the fluid will see the

collisions randomly distribute the nearby particle velocities so that the particle

distribution will appear locally isotropic.

Because a comoving observer sees an isotropic distribution of particles, the com-

ponents of the fluid’s energy momentum tensor in her frame must have no preferred

direction: T αβ uβ must be invariant under rotations that fix uα . Denote by

qαβ = gαβ + uαuβ (1.1)

the projection operator orthogonal to uα . The momentum current

qα
γ T γβ uβ

is a vector in the 3-dimensional subspace orthogonal to uα , and it is there-

fore invariant under rotations of that subspace only if it vanishes. Similarly, the

symmetric trace-free tensor 3T αβ − 1
3 qαβ 3T ≡ qα

γ qβ
δT

γ δ − 1
3 qαβ qγ δT

γ δ belongs

to a j = 2 representation of the rotation group and can be invariant only if it

vanishes.

It follows that the only nonzero parts of T αβ are the rotational scalars

ǫ := T αβ uαuβ (1.2)

and

p :=
1

3
qγ δT

γ δ . (1.3)
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1.1 Perfect fluids 3

More concretely, in an orthonormal frame eμ̂ , with eα
0̂

= uα , the components T 0̂ î

and T î ĵ − 1
3 δ î ĵT k̂

k̂ must vanish, implying that T αβ has components

‖T μ̂ ν̂ ‖ =

∥

∥

∥

∥

∥

∥

∥

∥

ǫ

p

p

p

∥

∥

∥

∥

∥

∥

∥

∥

. (1.4)

To summarize: The condition of local isotropy suffices to define a perfect fluid by

enforcing a stress-energy tensor (synonymous with energy-momentum tensor) of the

form

T αβ = ǫuαuβ + pqαβ . (1.5)

The scalars ǫ and p are the total energy density (or, simply, energy density) and the

pressure, as measured by a comoving observer (an observer with 4-velocity uα ).

Thermodynamics. We denote by n the baryon number density and assign a fixed rest

mass mB per baryon.1 The rest-mass density (equivalently, baryon-mass density)

is then

ρ := mB n. (1.6)

In general, the properties of matter in a compact object will depend on several

parameters, including fluid and magnetic stresses, entropy gradients, composition,

heat flow, and neutrino emission. Here, we restrict our attention to the case of a

perfect fluid with equilibrium composition, where the energy density and pressure

depend on two parameters that can be taken to be ρ and the specific entropy

(entropy per unit rest mass) s,

ǫ = ǫ(ρ, s), p = p(ρ, s). (1.7)

The thermodynamics of the fluid is described by the first law, which, in terms of ρ

and s, takes the form

dǫ = ρTds + hdρ, (1.8)

where T is temperature and h is the specific enthalpy (enthalpy per unit rest mass)

h :=
ǫ + p

ρ
. (1.9)

One can easily derive Eq. (1.8) from its more common form in terms of extensive

quantities,

dE = TdS − p dV + μ dN ≡ TdS − p dV + g dM0 , (1.10)

1 Assignment of a rest mass density is somewhat arbitrary, but the difference between choices is less
than 0.1%. We follow earlier papers in using the mass per nucleon of 12 C, mB = 1.659 × 10−24 g.
This choice is equivalent, up to a constant factor, to assigning to a fluid the rest mass of the
collection of free electrons and protons that would result from dispersing the fluid.
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4 Stationary, axisymmetric equilibria

by introducing the energy E, entropy S, volume V , baryon number N , and rest

mass M0 = mB N of a fluid element as measured by a comoving observer. (Here

μ = gmB , where the quantity g is to be defined below.) Then, writing

ǫ =
E

V
, s =

S

M0
, ρ =

M0

V
,

and using conservation of baryons in the form dM0 = 0 to replace dV/V by −dρ/ρ,

we quickly obtain Eq. (1.8).

Note that, whether or not one adds baryons to the fluid, one can choose dV so

that the number of baryons in the volume V + dV is unchanged; Eq. (1.8) thus holds

whether or not baryons are added to the fluid. On the other hand, if one simply

enlarges the volume under consideration without changing the internal state of

the fluid (keeping ρ and s constant), then dρ = ds = dǫ = 0, dM0 = ρdV, and the

extensive version (1.10) of the first law implies

ǫdV = d(ǫV ) = Td(ρsV ) − p dV + g d(ρV ) = (ρTs − p + ρg)dV,

whence

g =
ǫ + p

ρ
− Ts. (1.11)

The quantity g is thus the specific Gibbs free energy (free energy per unit rest mass),

and μ = gmB =
ǫ + p − ρTs

n
is the Gibbs free energy per baryon, each defined for

a comoving observer.

Defining the specific internal energy (internal energy per unit rest mass) e by the

relation

ǫ = ρ(1 + e), (1.12)

one recovers the Newtonian expression for the specific enthalpy,

hNewtonian = h − 1 = e + p/ρ. (1.13)

Because the relativistic energy density ǫ includes the rest-mass density ρ, the rela-

tivistic enthalpy per unit rest mass differs from its Newtonian counterpart by the

rest mass per unit rest mass, by ρ/ρ = 1.

Baroclinic (entropy nonconserving) flow. From the definition (1.9) and using

Eq. (1.8), one finds

dh =
dǫ

ρ
+

dp

ρ
−

ǫ + p

ρ2
dρ = Tds + h

dρ

ρ
+

dp

ρ
− h

dρ

ρ

= Tds +
dp

ρ

⇒ d lnh =
T

h
ds +

dp

ǫ + p
, (1.14)
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1.1 Perfect fluids 5

implying

∇α lnh =
T

h
∇αs +

1

ǫ + p
∇αp. (1.15)

Taking the curl of (1.15), we arrive at

0 = ∇[α∇β ] lnh = ∇[α

(

T

h
∇β ]s

)

+ ∇[α

(

1

ǫ + p
∇β ]p

)

. (1.16)

The last relation implies that in the presence of entropy gradients (∇s �= 0), surfaces

of constant energy density (isopycnic surfaces) do not, in general, coincide with

surfaces of constant pressure (isobaric surfaces). Such a flow is called baroclinic,

and, for a rotating star, it implies the presence of meridional circulation.

Barotropic flow. One commonly uses a one-parameter equation of state to describe

a compact star, because within a short time after formation, neutrino emission cools

the star to 1010 K ≃ 1 MeV. This is much smaller than the Fermi energy of the

interior, in which a density greater than nuclear (0.16 fm−3) implies a Fermi energy

greater than EF (0.16 fm−3) ≈ 60MeV. A neutron star is in this sense cold, and,

because nuclear reaction times are shorter than the cooling time, one can use a

zero-temperature equation of state (EOS) to describe the matter:

ǫ = ǫ(ρ), p = p(ρ), (1.17)

or, equivalently,

ǫ = ǫ(p). (1.18)

In a stationary, one-component perfect fluid, a one-parameter equation of state

of the form (1.18) holds, more generally, when the specific entropy is constant

throughout the star (∇s = 0) – that is, for a homentropic flow. From Eq. (1.16) it

is evident that in such a case, the isopycnic and isobaric surfaces coincide – that is,

the homentropic flow of a one-component perfect fluid is barotropic, which is also

implied by Eq. (1.18) itself.

In a homentropic star, the first law, Eq. (1.8), takes the form

dǫ = hdρ, (1.19)

and using Eq. (1.14), the specific enthalpy is also given by

h = exp

(
∫ p

0

dp

ǫ + p

)

, (1.20)

with ǫ
ρ = 1 at p = 0 (the gas is nonrelativistic at low densities).

Although a nonhomentropic star is, in general, a barocline, if one makes the

assumption that ǫ = ǫ(p), then Eq. (1.16) implies, for a one-component perfect

fluid, that s = s(ρ), and the star is still barotropic.2 Similarly, if s = s(ρ), the star

is barotropic.

2 Such models are sometimes called pseudobarotropes in the literature.
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6 Stationary, axisymmetric equilibria

Fluid dynamics and conservation laws. For a two-parameter equation of state, five

variables determine the state of a perfect fluid; they can be taken to be ǫ, p and three

independent components of uα . The dynamical evolution of the fluid is governed

by the vanishing divergence of the stress-energy tensor

∇β T αβ = 0, (1.21)

and by conservation of baryons,

∇α (ρuα ) = 0. (1.22)

The projection of the equation ∇β T αβ = 0 along uα yields an energy conservation

law, whereas the projection orthogonal to uα is the relativistic Euler equation.

For an intuitive understanding of these equations, it is helpful to look first at

conservation of baryons.

Conservation of baryons. The baryon mass M0 of a fluid element is conserved by

the motion of the fluid. The proper volume of a fluid element is the volume V of

a slice orthogonal to uα through the history of the fluid element; conservation of

baryons can be written in the form 0 = ΔM0 = Δ(ρV ). The fractional change in V

in a proper time Δτ is given by the 3-dimensional divergence of the velocity in the

subspace orthogonal to uα :

ΔV

V
= qαβ∇αuβ Δτ. (1.23)

Because uβ uβ = −1, we have uβ∇αuβ = 1
2∇α (uβ uβ ) = 0, implying

qαβ∇αuβ = ∇β uβ . (1.24)

With uα∇αρ =
d

dτ
ρ, conservation of baryons takes the form

0 =
Δ(ρV )

V
= Δρ + ρ

ΔV

V
= (uα∇αρ + ρ∇αuα )Δτ, (1.25)

or

∇α (ρuα ) = 0. (1.26)

Conservation of energy. The projection uα∇β T αβ = 0 similarly expresses energy

conservation for a fluid element:

0 = uα∇β T αβ = uα∇β [ǫuαuβ + pqαβ ]

= −∇β (ǫuβ ) + puα∇β (gαβ + uαuβ )

= −∇β (ǫuβ ) − p∇β uβ ,

implying

∇β (ǫuβ ) = −p∇β uβ . (1.27)
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1.1 Perfect fluids 7

The equation means that the total energy of a fluid element decreases by the work,

p dV = pV ∇β uβ dτ, (1.28)

that it does on its surroundings in proper time dτ .

Relativistic Euler equation. The projection of the conservation of the stress-energy

tensor orthogonal to uα is

qα
γ∇β T βγ = 0, (1.29)

so that

0 = qα
γ∇β [ǫuβ uγ + pqβγ ]

= qα
γ ǫuβ∇β uγ + qαβ∇β p + qα

γ p∇β (uβ uγ )

= ǫuβ∇β uα + qαβ∇β p + puβ∇β uα ,

implying

(ǫ + p)uβ∇β uα = −qαβ∇β p. (1.30)

For a barotropic fluid with constant entropy (a homentropic fluid), one can use

Eq. (1.20) to write the relativistic Euler equation in the form

uβ∇β uα = −qαβ∇β lnh (1.31)

or, equivalently,

uβ∇[α (huβ ]) = 0. (1.32)

In this equation, the form ωαβ , defined by

ωαβ = ∇α (huβ ) −∇β (huα ), (1.33)

is the relativistic vorticity.

Newtonian approximation. Let ε be a small parameter of order v/c or vsound/c,

whichever is larger. In the Newtonian approximation, there are Cartesian coordi-

nates for which the metric has the form

ds2 = −(1 + 2Φ)dt2 + (dx2 + dy2 + dz2)(1 + O(ε2)), (1.34)

and with off-diagonal terms of order εΦ. Here, Φ is the Newtonian potential, satis-

fying

∇2Φ = 4πρ. (1.35)
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8 Stationary, axisymmetric equilibria

The components uμ and scalars Φ, ǫ, p, ρ satisfy relations of the form ∂tΦ =

O(ε)∇iΦ and have the orders

ut = 1 + O(ε2), (1.36)

ui = vi + O (ε3), (1.37)

p/ǫ = O (ε2), (1.38)

ǫ = ρ[1 + O (ε2)]. (1.39)

Conservation of baryons (1.26) then takes the form

∂tρ + ∂i(ρvi) = 0 + O (ρε2). (1.40)

The relativistic Euler equation becomes

ρuμ∇μui = −∇ip;

and, after using the metric to compute Γi
tt = ∇iΦ[1 + O(ε2)], we recover the Euler

equation

ρ(∂t + vj∇j )vi + ρ∂iΦ = −∇ip. (1.41)

Conservation of energy (1.27) to the lowest nontrivial order, O(ε3), immediately

reduces to conservation of baryons. To O(ε5), one obtains the energy conservation

equation that arises from the Euler equation (1.41) by dotting it with vi , but to

deduce this relation from Eq. (1.27), one must keep subleading terms in the metric

and 4-velocity.

Spacetime symmetries. A vector field ξα is a Killing vector if it Lie derives the

metric

Lξgαβ = ∇αξβ + ∇β ξα = 0. (1.42)

A Killing vector generates a family of isometries, diffeomorphisms that leave the

metric invariant. We will call ξα a symmetry vector of a perfect-fluid spacetime if

ξα is a Killing vector that also Lie derives the fluid variables:

Lξu
α = 0, Lξǫ = 0, Lξp = 0. (1.43)

Associated with a symmetry ξα is a quantity huβ ξβ that is conserved along the

spacetime trajectories of the fluid,

Lu

(

huβ ξβ
)

= 0. (1.44)

To derive this relation, we use the form (1.32) of the Euler equation to write

0 = uβ [∇β (huα ) −∇α (huβ )] ξα

= uβ∇β (huα ξα ) − uβ Lξ (huβ )

= uβ∇β (huα ξα ),

as claimed.
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1.1 Perfect fluids 9

Stationary flow. A stationary flow is described by a spacetime with an asymptoti-

cally timelike symmetry vector, tα , the generator of time translations that leave the

metric and the fluid variables fixed. The corresponding conservation law, (1.44),

Lu

(

huβ tβ
)

= Lu

(

ǫ + p

ρ
uβ tβ

)

= 0, (1.45)

is the relativistic form of Bernoulli’s law, the conservation of enthalpy per unit rest

mass, −hut , along the trajectories of a stationary flow.

To obtain the Newtonian approximation,

(∂t + Lv)

(

hNewtonian +
1

2
v2 + Φ

)

= 0,

one must use the O(ε2) form of ut , namely ut = −(1 + Φ + 1
2 v2), implied by

Eqs. (1.34), (1.36), (1.37) and the normalization uαuα = −1. Note that the def-

inition hNewtonian = h − 1 coincides for isentropic flows with

hNewtonian =

∫ p

0

dp

ρ
, (1.46)

as follows from Eq. (1.13) and the first law in the form de =
p

ρ2
dρ.

Axisymmetric flow. An axisymmetric flow is described by a spacetime with a rota-

tional symmetry vector φα , a spacelike vector field whose orbits are circles, except

on an axis of symmetry (a two-dimensional submanifold of the spacetime), where

φα = 0. The corresponding conservation law, (1.44),

Lu(huβ φβ ) = 0, (1.47)

expresses the conservation of a fluid element’s specific angular momentum, j := huφ ,

the angular momentum per unit rest mass about the axis of symmetry associated

with φα . We will see in Section 1.8 that calling j the specific angular momentum

is consistent with the integral expression for the total angular momentum J of the

spacetime: J =
∫

jdM0 .

Isentropic flow. In the absence of shocks, the flow of a perfect fluid remains isen-

tropic – that is, each fluid element conserves its specific entropy along its trajectory,

uα∇αs = 0. (1.48)

Formally, the relation follows from conservation of baryons (1.26), conservation of

energy (1.27), and from the first law (1.8) or equivalently the equation of state

ǫ = ǫ(ρ, s).

Conservation of vorticity and circulation in barotropic flows. The relativistic vortic-

ity ωαβ was defined by Eq.(1.33). From Eq. (1.32) and the Cartan identity (A.38),

we have

0 = uβ [∇β (huα ) −∇α (huβ )] = Lu (huα ) + ∇αh. (1.49)
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10 Stationary, axisymmetric equilibria

From the fact that exterior derivatives and Lie derivatives commute, ∇[αLuwβ ] =

Lu∇[αwβ ], the variation of vorticity along fluid trajectories is given by

Luωαβ = −2∇[α∇β ]h = 0. (1.50)

For a barotropic flow, it immediately follows that vorticity is conserved along the

fluid trajectories.

The corresponding integral law is obtained as follows. Let c be a closed curve in

the fluid, bounding a 2-surface S; and let cτ be the curve obtained by moving each

point of c a proper time τ along the fluid trajectory through that point. From the

relation

Luωαβ = ∇αLu(huβ ) −∇βLu(huα ), (1.51)

we have

0 =

∫

S

Luωαβ dSαβ =

∫

c

Lu(huα )dlα

=
d

dτ

∫

cτ

huα dlα , (1.52)

where Stokes’s theorem was used to obtain the second equality and Eq. (A.83) of

Appendix A was used in the last equality. That is, the line integral,
∫

cτ

huα dlα =

∫

cτ

ǫ + p

ρ
uα dlα (1.53)

(the circulation of the flow along a closed curve), is independent of τ , conserved by

the fluid flow.

Circular flow (absence of meridional circulation). Although newly born neutron

stars are baroclinic, having meridional circulation and strong convection in the outer

layers, as the star cools below the Fermi temperature for neutrons, its equation of

state becomes essentially barotropic. The velocity field becomes circular (its only

spatial velocity component is uφ); viscosity and the magnetic field enforce uniform

rotation.

1.2 The spacetime of a rotating star

A rotating star can be modeled by a stationary, axisymmetric, perfect-fluid space-

time, whose circular velocity field uα can be written in terms of the two Killing

vectors tα and φα ,

uα = ut(tα + Ωφα ), (1.54)

where the scalar

ut := [−gαβ (tα + Ωφα )(tβ + Ωφβ )]−1/2 (1.55)

www.cambridge.org/9780521872546
www.cambridge.org

