Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter More Information

#### The Surface of Mars

Our knowledge of Mars has grown enormously over the last decade as a result of the Mars Global Surveyor, Mars Odyssey, Mars Express, and the two Mars Rover missions. This book is a systematic summary of what we have learnt about the geological evolution of Mars as a result of these missions, and builds on the themes of the author's previous book on this topic.

The surface of Mars has many geological features that have recognizable counterparts on Earth. Many are huge in comparison to those on Earth, including volcanoes, canyons and river channels that are ten times larger than their terrestrial equivalents. The book describes the diverse Martian surface features and summarizes current ideas as to how, when, and under what conditions they formed. It explores how Earth and Mars differ and why the two planets evolved so differently. While the author's main focus is on geology, he also discusses possible implications of the geological history for the origin and survival of indigenous Martian life.

Up-to-date and richly illustrated with over two hundred figures, the book will be a principal reference for researchers and students in planetary science. The comprehensive list of references will also assist readers in pursuing further information on the subject.

MICHAEL CARR is a Geologist Emeritus at the U.S. Geological Survey, and has over 40 years' experience of planetary science research. In the early 1970s Dr. Carr was a member of the Mariner 9 team and leader of the Viking Orbiter Imaging team. He was co-investigator on the Mars Global Surveyor, the Mars Exploration Rovers, and the High Resolution Stereo Camera on Mars Express. He is a Fellow of the Geological Society of America, the American Geophysical Union, and the American Association for the Advancement of Science, and was awarded the 1994 National Air and Space Museum Lifetime Achievement Award for his work on Mars. He is also the author of *The Surface of Mars* (1981) and *Water on Mars* (1996).

Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>

## **Cambridge Planetary Science Series**

Series editors: F. Bagenal, F. Nimmo, C. Murray, D. Jewitt, R. Lorenz and S. Russell

Books in the series

Jupiter: The Planet, Satellites and Magnetosphere F. Bagenal, T. E. Dowling and W. B. McKinnon Meteorites: A Petrologic, Chemical and Isotopic Synthesis R. Hutchinson The Origin of Chondrules and Chondrites D. W. G. Sears Planetary Rings L. Esposito The Geology of Mars: Evidence from Earth-Based Analogs M. Chapman The Surface of Mars M. Carr Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>

# The Surface of Mars

### MICHAEL H. CARR

U.S. Geological Survey Menlo Park, CA



Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>



Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521872010

© Michael H. Carr 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2006 Reprinted with corrections 2008 First paperback edition 2018

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Carr, M. H. (Michael H.) The Surface of Mars / Michael H. Carr. p. cm. – (Cambridge planetary science) Includes bibliographical references and index. ISBN-13: 978-0-521-87201-0 (hardback) ISBN-10: 0-521-87201-4 (hardback) 1. Mars (Planet)Surface. I. Title. II. Series. QB641.C3632 2006 559.9'23–dc22

2006035548

ISBN 978-0-521-87201-0 Hardback ISBN 978-1-108-46275-4 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>

## Contents

| Preface p |                                          |    |  |  |  |  |
|-----------|------------------------------------------|----|--|--|--|--|
| Ma        | Maps xi                                  |    |  |  |  |  |
|           |                                          |    |  |  |  |  |
| 1         | Overview                                 | 1  |  |  |  |  |
|           | Telescopic observations                  | 1  |  |  |  |  |
|           | Orbital and rotational motions           | 2  |  |  |  |  |
|           | Global structure and topography          | 5  |  |  |  |  |
|           | Atmosphere                               | 5  |  |  |  |  |
|           | Surface temperatures                     | 9  |  |  |  |  |
|           | Stability of water                       | 11 |  |  |  |  |
|           | Global geology                           | 14 |  |  |  |  |
|           | Meteorites                               | 19 |  |  |  |  |
|           | Carbonaceous chondrites and chemical     |    |  |  |  |  |
|           | fractionation                            | 19 |  |  |  |  |
|           | Martian meteorites                       | 20 |  |  |  |  |
| 2         | Impact anotara                           | 23 |  |  |  |  |
| 2         | Impact craters<br>Crater-forming objects | 23 |  |  |  |  |
|           | Crater morphology                        | 23 |  |  |  |  |
|           | Simple craters                           | 24 |  |  |  |  |
|           | Complex craters                          | 24 |  |  |  |  |
|           | Multi-ringed basins                      | 23 |  |  |  |  |
|           | Crater formation                         | 20 |  |  |  |  |
|           | Ejecta morphology                        | 31 |  |  |  |  |
|           | Crater modification                      | 34 |  |  |  |  |
|           | Crater size frequencies and ages         | 36 |  |  |  |  |
|           | Summary                                  | 41 |  |  |  |  |
|           | Sammary                                  |    |  |  |  |  |
| 3         | Volcanism                                | 43 |  |  |  |  |
|           | Basaltic volcanism                       | 43 |  |  |  |  |
|           | Effect of Martian conditions             | 44 |  |  |  |  |
|           | Tharsis                                  | 46 |  |  |  |  |
|           | Tharsis Montes                           | 46 |  |  |  |  |
|           | Olympus Mons                             | 51 |  |  |  |  |
|           | Alba Patera                              | 54 |  |  |  |  |
|           | Small Tharsis shields                    | 57 |  |  |  |  |
|           | Elysium                                  | 59 |  |  |  |  |
|           | Lahars and dikes                         | 60 |  |  |  |  |
|           | Cerberus-Amazonis                        | 64 |  |  |  |  |
|           | Hellas-Hesperia                          | 68 |  |  |  |  |
|           | Plains volcanism                         | 70 |  |  |  |  |
|           | Volcano-ice interactions                 | 73 |  |  |  |  |
|           | Summary                                  | 74 |  |  |  |  |

| 4 Global structure and tectonics   | 77         |
|------------------------------------|------------|
| Formation of the core              | 77         |
| Global dichotomy                   | 78         |
| Thickness of the lithosphere       | 84         |
| Formation of Tharsis               | 84         |
| Surface indicators of stress       | 86         |
| Extensional structures             | 86         |
| Compressional structures           | 89         |
| Deformational features related to  | Tharsis 90 |
| 5 Canyons                          | 95         |
| Physiography                       | 96         |
| Canyon walls                       | 102        |
| Landslides                         | 103        |
| Interior layered deposits          | 105        |
| Formation of the canyons           | 110        |
| Summary                            | 111        |
| 6 Channels, valleys, and gullies   | 113        |
| Outflow channels                   | 113        |
| Circum-Chryse channels             | 114        |
| Description                        | 114        |
| Mode of formation                  | 116        |
| Tharsis                            | 121        |
| Amazonis and Elysium Planitiae     | 122        |
| Description                        | 122        |
| Mode of formation                  | 126        |
| Utopia Planitia                    | 127        |
| Hellas                             | 129        |
| Argyre                             | 130        |
| The poles                          | 130        |
| Valley networks                    | 131        |
| General description                | 132        |
| Drainage basins                    | 137        |
| Origin                             | 139        |
| Noachian valleys                   | 140        |
| Post-Noachian valleys              | 144        |
| Gullies                            | 144        |
| Summary                            | 147        |
| 7 Lakes and oceans                 | 149        |
| Paleolakes in the cratered uplands | 149        |
| Argyre and Hellas                  | 156        |

Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>

Northern oceans

viii

|    | Shorelines                                    | 164 |
|----|-----------------------------------------------|-----|
|    | Evidence for marine sediments                 | 167 |
|    | Evidence for ice                              | 168 |
|    | Possible fate of a northern ocean             | 168 |
|    | Summary                                       | 171 |
| 8  | Ice                                           | 173 |
|    | The stability of ice                          | 174 |
|    | Spectral evidence for ice                     | 175 |
|    | Permafrost                                    | 175 |
|    | Ice-rich surficial deposits at high latitudes | 177 |
|    | Fretted terrain                               | 178 |
|    | Terrain softening                             | 179 |
|    | Lobate debris aprons                          | 180 |
|    | Lineated valley fill                          | 184 |
|    | Origin of the fretted valleys                 | 185 |
|    | Glaciers                                      | 187 |
|    | Other possible indicators of ground ice       | 188 |
|    | Crater ejecta patterns                        | 188 |
|    | Polygonal fractures                           | 189 |
|    | Thermokarst                                   | 191 |
|    | Summary                                       | 191 |
| 9  | Wind                                          | 193 |
|    | Entrainment of particles by the wind          | 193 |
|    | Dust storms                                   | 195 |
|    | Wind streaks and tails                        | 197 |
|    | Dunes, ripples, and drifts                    | 198 |
|    | Regional eolian deposits                      | 203 |
|    | Wind erosion                                  | 204 |
|    | Summary                                       | 205 |
| 10 | Poles                                         | 211 |
|    | The present polar environments                | 211 |
|    | General description of polar terrains         | 212 |
|    | Northern polar deposits                       | 212 |
|    | Upper unit                                    | 212 |
|    | Basal unit                                    | 218 |
|    | Southern polar deposits                       | 221 |
|    | The Dorsa Argentea Formation                  | 222 |
|    | The CO <sub>2</sub> residual cap              | 225 |

| Vikings 1 and 2229Mars Pathfinder231Mars Exploration Rovers231Spirit232Gusev crater regional context232Gusev plains235Columbia Hills238Clovis class239Wishstone class240Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mars Exploration Rovers231Spirit232Gusev crater regional context232Gusev plains235Columbia Hills238Clovis class239Wishstone class240Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262               |
| Spirit232Gusev crater regional context232Gusev plains235Columbia Hills238Clovis class239Wishstone class240Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary254 <b>12 Climate change</b> Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                         |
| Gusev crater regional context232Gusev plains235Columbia Hills238Clovis class239Wishstone class240Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                        |
| Gusev plains235Columbia Hills238Clovis class239Wishstone class240Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                  |
| Columbia Hills238Clovis class239Wishstone class240Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                 |
| Clovis class239Wishstone class240Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                  |
| Wishstone class240Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                 |
| Peace class241Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                   |
| Watchtower class241Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                 |
| Backstay class242Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                    |
| Opportunity244Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                     |
| Regional context244The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                   |
| The Meridiani rocks and soils246The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                      |
| The Burns Formation246Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                      |
| Post-depositional alteration252Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                            |
| Groundwater movement253Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                                                           |
| Evaporitic sources254Summary25412Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                                                                                   |
| Evaporitic sources254Summary25412 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                                                                                  |
| 12 Climate change257Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                                                                                                                 |
| Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                                                                                                                                     |
| Noachian climate257Greenhouse warming258Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                                                                                                                                     |
| Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Retention of a dense CO2 atmosphere260Post-Noachian climate history262                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Post-Noachian climate history 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Recent climate changes 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Summary 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13 Implications for life 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The origin of life 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Habitability 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Survival 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ALH84001 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Looking for life 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Summary 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14 Summary 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reference 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Index 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Summary

Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter More Information

## Preface

This book summarizes our knowledge of the morphology of the martian surface and speculates on how the surface evolved to its present state. During the last three decades our knowledge of Mars has increased dramatically. A succession of orbiting spacecraft (Table I) have observed the planet at ever-increasing resolution, rovers have traversed the surface, analyzing and scrutinizing rocks along the way, and ever more sophisticated techniques are being used to analyze increasing numbers of martian meteorites. The planet has had a complicated history. The aim of the book is to summarize our understanding of the nature and sequence of the processes that led to the present configuration of the surface. While the book is intended for the serious student or researcher, technical jargon is avoided to the extent that it is possible without compromising precision. It is hoped that the book will be readable to informed non-Mars specialists as well as those active in the field.

Table I. Mars missions

Sufficient documentation is provided to enable the reader to dig more deeply wherever he or she wishes. Heavy reliance is placed on imaging data. Other evidence is referred to where available, but at the present time, imaging is by far the most comprehensive global data set that we have in terms of areal coverage and resolution range.

Exploration of Mars has captured world-wide interest. Mars is an alien planet yet not so alien as to be incomprehensible. The landscape is foreign yet we can still recognize familiar features such as volcanoes and river channels. We can transport ourselves through our surrogate rovers to a surface both strange and familiar and readily imagine some future explorers following in their paths. While past speculations about martian civilization may now seem absurd, the possibility that Mars may at one time have hosted some form of life remains plausible. It remains the strongest scientific driver of the Mars Exploration program. The life

| Mariner 4              | US     | 11/28/1964 | Flew by 7/15/1965; first S/C images            |
|------------------------|--------|------------|------------------------------------------------|
| Mariner 6              | US     | 2/24/1969  | Flew by 7/31/1969; imaging and other data      |
| Mariner 7              | US     | 3/27/1969  | Flew by 8/5/1969; imaging and other data       |
| Mars 2                 | USSR   | 5/19/1971  | Crash landed; no surface data                  |
| Mars 3                 | USSR   | 5/28/1971  | Crash landed; no surface data                  |
| Mariner 8              | US     | 5/8/1971   | Fell into Atlantic Ocean                       |
| Mariner 9              | US     | 5/30/1971  | Into orbit 11/3/1971; mapped planet            |
| Mars 4                 | USSR   | 7/21/1973  | Failed to achieve Mars orbit                   |
| Mars 5                 | USSR   | 7/25/1973  | Into orbit 2/12/1975; imaging and other data   |
| Mars 6                 | USSR   | 8/5/1973   | Crash landed                                   |
| Mars 7                 | USSR   | 8/9/1973   | Flew by Mars                                   |
| Viking 1               | US     | 8/20/1975  | Landed on surface 7/20/1976; orbiter mapping   |
| Viking 2               | US     | 9/9/1975   | Landed on surface $9/3/1976$ ; orbiter mapping |
| Phobos 1               | USSR   | 7/7/1988   | Lost 9/2/1988                                  |
| Phobos 2               | USSR   | 7/12/1988  | Mars and Phobos remote sensing                 |
| Mars Observer          | US     | 9/22/1992  | Failed Mars orbit insertion                    |
| Pathfinder             | US     | 12/4/1996  | Landed 7/4/1997; lander and rover              |
| Global Surveyor        | US     | 11/7/1996  | Into orbit 9/11/1997; imaging and other data   |
| Odyssey                | US     | 4/7/2001   | Into orbit 10/24/2001: imaging, remote sensing |
| Spirit Rover           | US     | 6/10/2003  | Landed in Gusev 1/3/2004                       |
| Opportunity Rover      | US     | 7/7/2003   | Landed in Meridiani 1/24/2004                  |
| Mars Express           | Europe | 6/2/2003   | In orbit 12/25/2003; imaging, remote sensing   |
| Reconnaissance Orbiter | US     | 8/12/2005  | In orbit 3/10/2006; imaging, remote sensing    |

ix

Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter

х

More Information

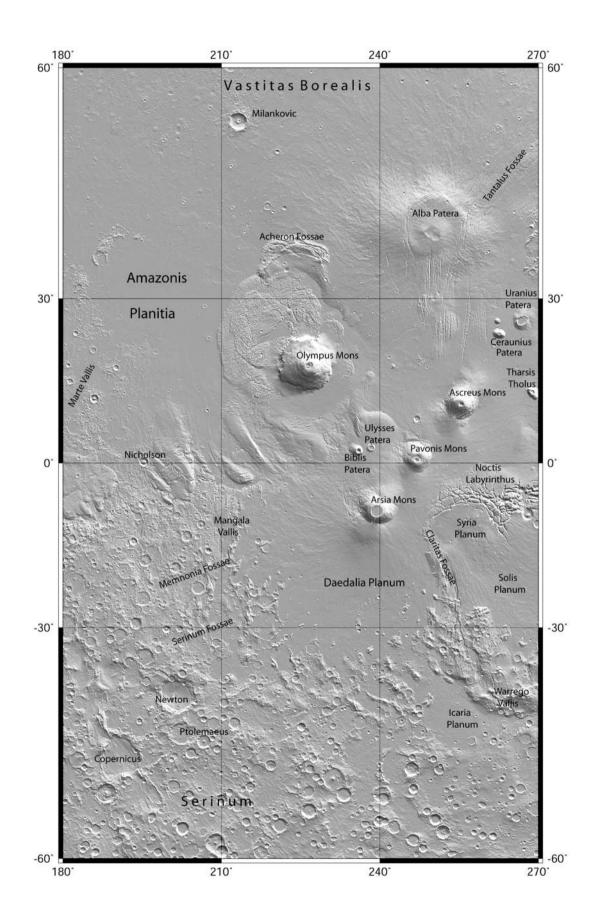
CAMBRIDGE

theme is constantly in the background throughout the book. Impacts have implications for survival of any early life, and may have resulted in cross-fertilization of Mars and Earth. Large floods may have temporarily affected global climates and provided temporary refuges in the resulting lakes and seas. Volcanic activity may have created hydrothermal systems in which life could thrive. Conditions on early Mars may have been very similar to those on early Earth, at a time when life had already taken hold. Thus, while the book is not explicitly about life, almost every chapter has implications for the topic.

The book is intended as a replacement for an earlier book (Carr, 1981) that summarized our understanding of the planet as it was shortly after completion of the Viking missions. This book is different from the original in several ways. The field was much less mature when the first book was written. I was able to read most of the literature and examine most of the imaging data. Neither of these tasks is possible any longer. Approximately 500 papers are published on Mars each year and the number is increasing. One can no more write a book about Mars and reference all the relevant papers, than one can about the Earth. Similarly, the book has been written without seeing most of the available imaging.

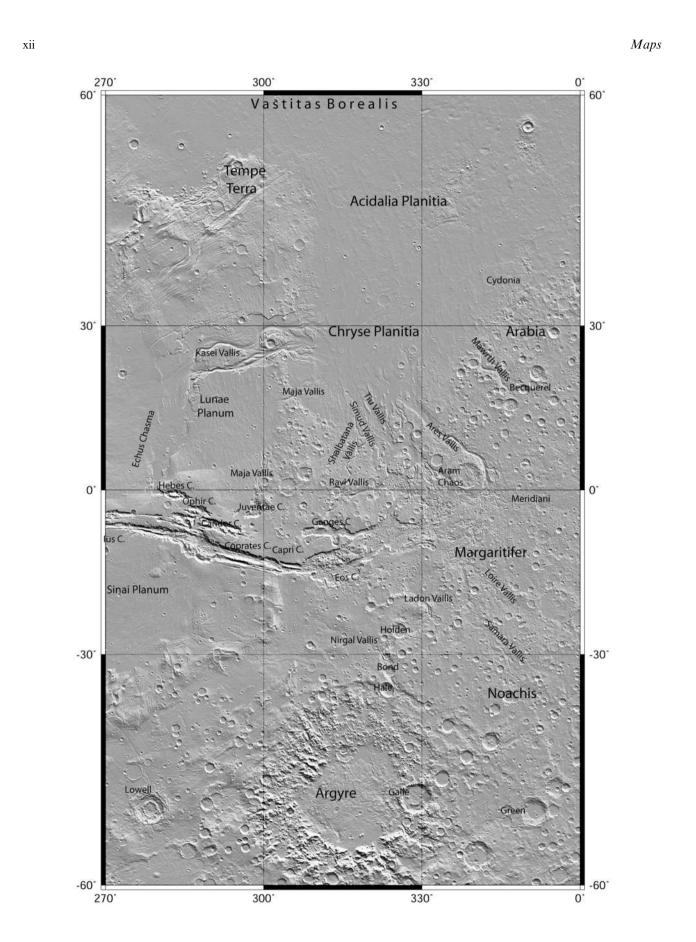
Over 200,000 images have been taken just with the Mars Orbiter Camera on Mars Global Surveyor, and a comparable amount of imaging data has been acquired by THEMIS on Mars Odyssey, the High Resolution Stereo Camera on Mars Express, and the Mars rovers. In addition to the imaging there are vast amounts of other remote sensing data, as well as analytical data from the surface and from meteorites. Clearly, summarizing all this data has involved a great deal of simplification.

The book is a snapshot of a moving picture. Following Viking there was almost a twenty-year drought during which barely any data was returned from the planet. But since the landing of Mars Pathfinder in 1996 and the insertion of Mars Global Surveyor into orbit in 1997, we have been receiving a steady stream. Along with the new data have come new ideas as to how the planet has evolved. The pace of change is rapid because our knowledge of the planet is still rudimentary and the data flux is high. It could be argued that the time is inopportune for a summary because of the rate of change. But change will continue. After two decades, new interpretations of the Viking data were still forthcoming. It will likely also take decades to digest the data currently being returned. I hope that there will never be a time when the field stabilizes and a good time to write a summary arrives.


The book was written in 2005 and 2006. I had just retired after having participated in almost every mission to Mars since the late 1960s, including several months of Mars Exploration Rovers (MER) operations at Jet Propulsion Laboratory (JPL). The book has benefited significantly from the continuous informal science discussions that are part of participating in missions. The Mars Rover end-of-day discussions, when the scientists would gather and exchange ideas about any topic that had intrigued them, were particularly stimulating. The Mars Orbiter Laser Altimeter (MOLA) team on Mars Global Surveyor held regular meetings on different science topics that were always fun. Of course, the book has benefited mostly from the engineers who have built and operated the spacecraft that have flown all the science instruments to Mars in recent years. Without sound engineering there is no science. The engineers do most of the hard work acquiring the data. The scientists have the fun of interpreting it all.

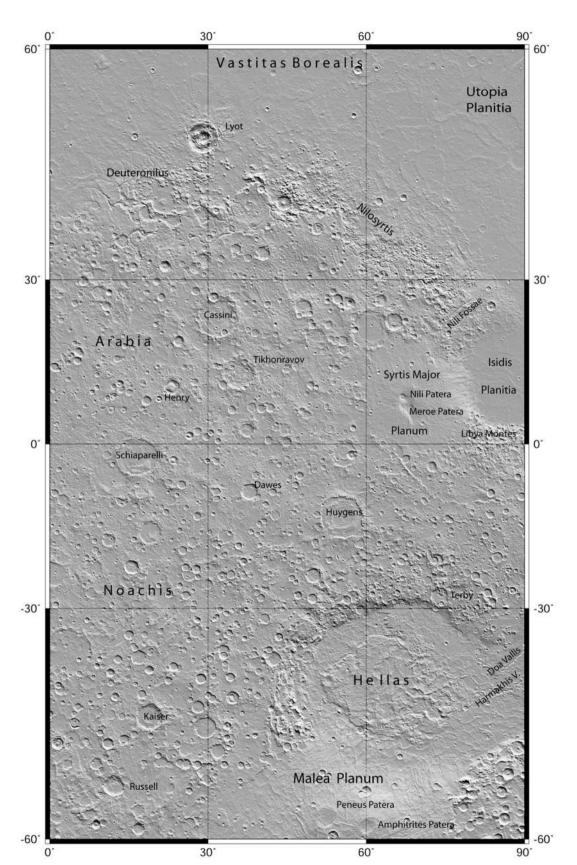
Two people deserve special mention for the help they provided. Phil Christensen, of Arizona State University, the THEMIS Principal Investigator, offered to make mosaics of areas of interest for illustrations. Some of the most spectacular images in the book are these THEMIS mosaics. Jim Head of Brown University is also a major contributor to the book. Jim has unusually broad expertise in planetary science, and is possibly the most prolific author in the field of planetary geology. He agreed to review all the chapters as they were written and provided numerous insightful comments that added greatly to the accuracy and comprehensiveness of the final product. Above all he provided encouragement to keep at it.

> Michael H. Carr U. S. Geological Survey Menlo Park, CA 94025, USA


Preface

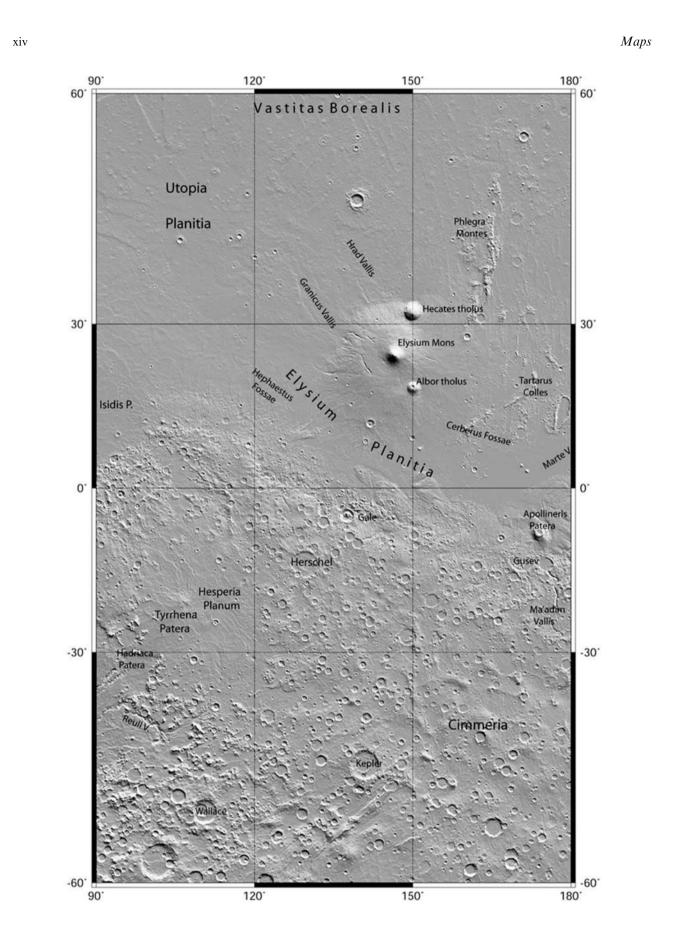
Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>




xi

Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>




Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>

Maps



xiii

Cambridge University Press & Assessment 978-0-521-87201-0 — The Surface of Mars Michael H. Carr Frontmatter <u>More Information</u>

