Iterative Error Correction

Turbo, Low-Density Parity-Check and Repeat–Accumulate Codes

Iterative error correction codes have found widespread application in cellular communications, digital broadcasting, deep space communications, and wireless LANs. This self-contained treatment of iterative error correction presents all the key ideas needed to understand, design, implement, and analyze these powerful codes.

Turbo, low-density parity-check, and repeat-accumulate codes are given equal, detailed coverage, with precise presentations of encoding and decoding procedures. Worked examples are integrated into the text to illuminate each new idea and pseudo-code is included for important algorithms to facilitate the reader's development of the techniques described. For each subject, the treatment begins with the simplest case before generalizing. There is also coverage of advanced topics such as density-evolution and EXIT charts for those readers interested in gaining a deeper understanding of the field. This text is ideal for graduate students in electrical engineering and computer science departments, as well as practitioners in the communications industry.

Sarah J. Johnson is a Research Fellow in the School of Electrical Engineering and Computer Science at the University of Newcastle, Australia. She is a member of the IEEE Information Theory and Communications Societies.

Iterative Error Correction

Turbo, Low-Density Parity-Check and Repeat–Accumulate Codes

SARAH J. JOHNSON

University of Newcastle, New South Wales

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521871488

O Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-87148-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Ro and Clara

Contents

Preface		
Nota	XV	
Com	monly used abbreviations	xix
Char	nnels, codes and capacity	1
1.1	Binary input memoryless channels	2
1.2	Entropy, mutual information and capacity	8
	1.2.1 A measure of information	8
	1.2.2 Entropy	10
	1.2.3 Capacity	13
1.3	Codes and decoding	16
	1.3.1 Decoding	18
	1.3.2 Performance measures	24
1.4	Bibliographic notes	29
1.5	Exercises	30
Low	-density parity-check codes	34
2.1	Introduction	34
2.2	Error correction using parity checks	34
	2.2.1 Low-density parity-check codes	37
2.3	Encoding	40
	2.3.1 (Almost) linear-time encoding for LDPC codes	44
	2.3.2 Repeat–accumulate codes	48
2.4	Decoding	48
	2.4.1 Message passing on the binary erasure channel	50
	2.4.2 Bit-flipping decoding	54
	2.4.3 Sum–product decoding	61
2.5	Bibliographic notes	71
2.6	Exercises	72
	Nota Com Char 1.1 1.2 1.3 1.4 1.5 Low 2.1 2.2 2.3 2.4 2.5 2.6	Notation Commonly used abbreviations Channels, codes and capacity 1.1 Binary input memoryless channels 1.2 Entropy, mutual information and capacity 1.2.1 A measure of information 1.2.2 Entropy 1.2.3 Capacity 1.3 Codes and decoding 1.3.1 Decoding 1.3.2 Performance measures 1.4 Bibliographic notes 1.5 Exercises Low-density parity-check codes 2.1 Introduction 2.2 Error correction using parity checks 2.3.1 (Almost) linear-time encoding for LDPC codes 2.3 Repeat–accumulate codes 2.4 Decoding 2.4.1 Message passing on the binary erasure channel 2.4.2 Bit-flipping decoding 2.4.3 Sum–product decoding 2.5 Bibliographic notes 2.6 Exercises

viii Contents

3	Low-density parity-check codes: properties and constructions		
	3.1	Introduction	75
	3.2	LDPC properties	75
		3.2.1 Choosing the degree distribution	76
		3.2.2 Girth and expansion	82
		3.2.3 Codeword and pseudo-codeword weights	84
		3.2.4 Cyclic and quasi-cyclic codes	89
		3.2.5 Implementation and complexity	95
	3.3	LDPC constructions	97
		3.3.1 Pseudo-random constructions	97
		3.3.2 Structured LDPC codes	105
	3.4	LDPC design rules	114
	3.5	Bibliographic notes	117
	3.6	Exercises	118
4	Conv	volutional codes	121
	4.1	Introduction	121
	4.2	Convolutional encoders	121
		4.2.1 Memory order and impulse response	125
		4.2.2 Recursive convolutional encoders	127
		4.2.3 Puncturing	131
		4.2.4 Convolutional code trellises	132
		4.2.5 Minimum free distance	135
	4.3	Decoding convolutional codes	136
		4.3.1 Maximum a posteriori (BCJR) decoding	136
		4.3.2 Log MAP decoding	148
		4.3.3 Maximum likelihood (Viterbi) decoding	156
	4.4	Bibliographic notes	160
	4.5	Exercises	161
5	Turb	165	
	5.1	Introduction	165
	5.2	Turbo encoders	165
	5.3	Iterative turbo decoding	169
	5.4	Turbo code design	176
		5.4.1 Interleaving gain	176
		5.4.2 Choosing the component codes	178
		5.4.3 Interleaver design	182
		5.4.4 Design rules	188
	5.5	Factor graphs and implementation	190
		5.5.1 Implementation and complexity	191
		5.5.2 Stopping criteria	194

_		Contents	
	5.6	Bibliographic notes	196
	5.7	Exercises	198
6	Seria	al concatenation and RA codes	201
	6.1	Serial concatenation	201
		6.1.1 Serially concatenated turbo codes	203
		6.1.2 Turbo decoding of SC codes	203
		6.1.3 Code design	207
	6.2	Repeat-accumulate codes	209
		6.2.1 Encoding RA codes	211
		6.2.2 Turbo decoding of RA codes	212
		6.2.3 Sum-product decoding of RA codes	217
		6.2.4 Irregular RA codes	220
		6.2.5 Weight-3 IRA codes	224
		6.2.6 Accumulate-repeat-accumulate codes	226
		6.2.7 Code design	227
	6.3	Bibliographic notes	232
	6.4	Exercises	234
7	Dens	sity evolution and EXIT charts	237
	7.1	Introduction	237
	7.2	Density evolution	238
		7.2.1 Density evolution on the BEC	239
		7.2.2 Ensemble thresholds	243
		7.2.3 Density evolution and repeat–accumulate codes	247
		7.2.4 Density evolution on general binary input memoryless channels	249
		7.2.5 Density evolution and turbo codes	254
		7.2.6 Designing ensembles with good thresholds	256
		7.2.7 Approximations to density evolution	260
	7.3	EXIT charts	261
		7.3.1 Mutual information	262
		7.3.2 EXIT charts for turbo codes	264
		7.3.3 EXIT charts for RA codes	273
		7 3 4 EXIT charts for LDPC codes	276
		7.3.5 Code design and analysis using EXIT charts	279
		Bibliographic notes	270
	74	Diolographic notes	213
	7.4 7.5	Exercises	281
8	7.4 7.5 Erro i	Exercises	281 283
8	7.4 7.5 Erroi 8.1	Exercises r floor analysis Introduction	281 283 283

Х

	Contents		
	8.2.1	Input-output weight enumerating functions for	
		convolutional codes	28
	8.2.2	Parallel concatenated code ensembles	29
	8.2.3	Serially concatenated code ensembles	29
	8.2.4	The error floor of irregular block codes	30
	8.2.5	Designing iterative codes to improve the interleaving gain and	
		error floor	30
	8.2.6	Asymptotic (in the code length) performance of iterative	
		ensembles	30
8.3	Finite-	-length analysis	30
8.4	Biblio	graphic notes	31
8.5	Exerci	ises	32
Refe	rences		32
Inde.	x		33

Preface

The field of error correction coding was launched with Shannon's revolutionary 1948 work showing – quite counter to intuition – that it is possible to transmit digital data with arbitrarily high reliability over noise-corrupted channels, provided that the rate of transmission is below the capacity of the channel. The mechanism for achieving this reliable communication is to encode a digital message with an error correction code prior to transmission and apply a decoding algorithm at the receiver.

Classical block and convolutional error correction codes were described soon afterwards and the first iterative codes were published by Gallager in his 1962 thesis; however they received little attention until the late 1990s. In the meantime, the highly structured algebraic codes introduced by Hamming, Elias, Reed, Muller, Solomon and Golay among others dominated the field. Despite the enormous practical success of these classical codes, their performance fell well short of the theoretically achievable performances set down by Shannon in his seminal 1948 paper. By the late 1980s, despite decades of attempts, researchers were largely resigned to this seemingly insurmountable theory–practice gap.

The relative quiescence of the coding field was utterly transformed by the introduction of "turbo codes", proposed by Berrou, Glavieux and Thitimajshima in 1993, wherein all the key ingredients of successful error correction codes were replaced: turbo codes involve very little algebra, employ iterative, distributed, algorithms and focus on average (rather than worst-case) performance. This was a ground-shifting paper, forcing coding theorists to revise strongly held beliefs. Overnight, the gap to the Shannon capacity limit was all but eliminated, using decoders with manageable complexity.

As researchers worked through the 1990s to understand just why turbo codes worked as well as they did, two researchers, McKay and Neal, introduced a new class of block codes designed to possess many features of the new turbo codes. It was soon recognized that these block codes were in fact a rediscovery of the low-density parity-check (LDPC) codes developed years earlier by Gallager. Generalizations of Gallager's LDPC codes by a number of researchers, including Luby, Mitzenmacher, Shokrollahi, Spielman, Richardson and Urbanke, to irregular LDPC codes actually achieve Shannon's capacity limits on some Xİİ

Cambridge University Press 978-0-521-87148-8 - Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes Sarah J. Johnson Frontmatter <u>More information</u>

Preface

channels and approach Shannon's capacity to within hundredths of a decibel on others.

A new class of iterative codes introduced by Divsalar, Jin and McEliece, called repeat–accumulate (RA) codes, combine aspects of both turbo and LDPC codes, arguably containing the best features of each. The combination of simplicity with excellent decoding performance has made RA codes a hot topic for the coding community. Indeed, modified RA codes have been shown to be the first capacity-achieving codes with bounded complexity per message bit for both encoding and decoding.

So rapid has progress been in this area that coding theory today is in many ways unrecognizable from its state less than two decades ago. In addition to the strong theoretical interest in iterative codes, such codes have already been adopted in deep space applications, satellite-based digital video broadcasting, long-haul optical communication standards, wireless local area networking and mobile telephony.

This book presents an introductory treatment of these extremely powerful error-correcting codes and their associated decoding algorithms. The focus of the book is almost exclusively on iterative error correction. Indeed, classical coding topics are only covered where they are necessary for the development of iterative codes, as in Chapters 1 and 4. The umbrella term *iterative decoding*, sometimes referred to as *message-passing decoding*, *probabilistic decoding*, decoding of *codes on graphs*, or simply the *turbo principle*, here encompasses the decoding algorithms associated with turbo codes, low-density parity-check codes and repeat–accumulate codes.

The aim of this book is to provide a gentle introduction to turbo, low-density parity-check and repeat–accumulate codes, with equal coverage given to all three. No prior knowledge of coding theory is required. An emphasis on examples is employed to illuminate each new idea and pseudo-code is presented to facilitate the reader's development of the techniques described. The focus of this book is on ideas and examples rather than theorems and proofs. Where results are mentioned but not proved, references are provided for the reader wishing to delve deeper. Readers interested in a thorough exposition of the theory, however, need go no further than the excellent text by Richardson and Urbanke [1].

None of the material in this text is new; all of it is available in the iterative decoding literature. However, we have decided not to attempt to attribute every idea to the location of its first publication, not least of all because many ideas in the field have been developed independently by a number of authors in different ways. Most importantly, though, we want to keep the focus of the text on explanations of ideas rather than as a historical record. We do use references, however, to point out a few main turning points in the field and to provide direction for the reader wishing to pursue topics we have not fully covered.

Preface

Chapters 2 and 3 together can be read as a stand-alone introduction to LDPC codes and Chapters 4 and 5 together provide a stand-alone introduction to turbo codes. Subsequently, however, the distinction is less sharp. The material on RA codes in Chapter 6 draws heavily on the previous material and Chapters 7 and 8 apply to all three code types.

Book outline

Chapter 1 provides a general overview of point-to-point communications systems and the role played by error correction. Firstly we define three channel models, each of which will play an important role in the remainder of the book: the binary symmetric channel (BSC), the binary erasure channel (BEC) and the binary input additive white Gaussian noise channel (BI-AWGNC). From these channel models we introduce the concept of the capacity of a communications channel, a number that precisely captures the minimum redundancy needed in a coded system to permit (essentially) zero errors following decoding. We then turn to error correction and briefly introduce classical error correction techniques and analysis.

Chapters 2 and 3 serve as a self-contained introduction to low-density paritycheck codes and their iterative decoding. To begin, block error correction codes are described as a linear combination of parity-check equations and thus defined by their parity-check matrix representation. Iterative decoding algorithms are introduced using a hard decision (bit-flipping) algorithm so that the topic is first developed without reference to probability theory. Subsequently, the sumproduct decoding algorithm is presented. Taken alone, Chapter 2 provides a working understanding of the encoding and decoding of LDPC codes without any material on their design and analysis. In Chapter 3 we then discuss the properties of an LDPC code which affect its iterative decoding performance and we present some common construction methods used to produce codes with desired properties.

In Chapters 4 and 5 we turn to turbo codes and their soft, iterative, decoding, which has sparked an intense level of interest in such codes over the past decade. Our starting point is convolutional codes and their trellis representation. This opens the way to the optimal decoding of trellis-based codes using the BCJR algorithm for the computation of maximum a posteriori (MAP) (symbol) probabilities. Having presented the principles of convolutional component codes in Chapter 4, we develop the turbo encoder and decoder in Chapter 5, using the convolutional encoder and MAP decoder as the primary building blocks, and discuss design principles for turbo codes.

In Chapter 6 we consider iterative codes created using serial concatenation. Having so far treated separately the two main classes of iteratively decodable xiii

xiv **Preface**

codes, turbo and LDPC codes, we now consider the class of repeat–accumulate codes, which draws from both and arguably combines the best features of each.

Rather than consider the behaviour of any particular code, our focus in Chapter 7 shifts to *ensembles* of codes, and the *expected* behaviour of an iterative decoding algorithm over this ensemble. Tracking the evolution of the probability density function through successive iterations of the decoding algorithm, a process known as *density evolution* allows us to compute the thresholds of iterative code ensembles and compare their performance with the channel capacity. The chapter concludes by showing how density evolution can be usefully approximated by extrinsic information transfer (EXIT) analysis techniques to understand better the performance of iterative decoding algorithms.

In Chapter 8 we also use the concept of code ensembles but now focus on low-noise channels and consider the error floor performance of iterative codes. Except for the special case of the binary erasure channel, our analysis considers the properties of the codes independently of their respective iterative decoding algorithms. In fact we assume maximum likelihood decoding, for which the performance of a code depends only on its codeword weight distribution.

Acknowledgements

I am very grateful to the many students who have provided useful feedback and suggestions on earlier versions of this text. I would also like to thank Adrian Wills, Vladimir Trajkovic, David Hayes, Björn Rüffer and Tristan Perez for their valuable assistance.

Phil Meyler and Sarah Matthews from Cambridge University Press were very helpful and patient through the many delays. Thanks also to Anna-Marie Lovett, Karen Sawyer and the typesetters from Aptara Inc. for their assistance post production and to Susan Parkinson, who performed wonders with her copyediting in a very tight time-frame.

I am particularly grateful to Steven Weller. As well as being responsible for starting me on this endeavor he has provided invaluable help and guidance along the way.

Most of all I owe more than I can say to my family, from whom much of the time to write this book was taken.

Notation

The following is a list of notation used across more than one chapter.

Forward metric of the BCJR decoder at time t for state S_i
Combiner parameter of an RA code
Number of codewords of weight d
Number of messages of weight w that produce codewords of
weight d
Vector of a priori LLRs
Vector of a priori LLRs into the <i>j</i> th decoder at the <i>l</i> th iteration of turbo decoding
Number of messages of weight w
Number of messages of weight w that produce parity bits of
weight p
Weight enumerating function (of a_d 's)
Input–output weight enumerating function (of $a_{w,d}$'s)
Input–redundancy weight enumerating function (of $A_{w,p}$'s)
LLR of $\alpha_t(S_i)$
Backward metric of the BCJR decoder at time t for state S_i
LLR of $\beta_t(S_i)$
Binary vector containing the codeword bits
Value of the codeword bit output at time <i>t</i> from the <i>i</i> th output of a convolutional encoder
Capacity of a channel with parameter <i>x</i>
An error correction code
Hamming weight of a binary codeword
Binary vector containing the interleaved message bits of an RA code
Minimum distance of an error correction code

xvi		Notation
	d_{f}	Free distance of a convolutional code
	$d_{\rm ef}$	Effective free distance of a convolutional or concatenated code
	$d_{\epsilon}^{(I)}$	Free distance of the inner code in a serially concatenated code
]	system
	$d_{c}^{(O)}$	Free distance of the outer code in a serially concatenated code
	u ₁	system
	ε	Erasure probability of the binary erasure channel
	e	Crossover probability of the binary symmetric channel
	E	Vector of extrinsic LLRs
	E_{ii}	Extrinsic message from the <i>j</i> th check node to the <i>i</i> th bit node
	$\mathbf{E}_{I}^{(j)}$	Vector of extrinsic LLRs from the <i>i</i> th decoder at the <i>l</i> th iteration
	-1	of turbo decoding
	E_h/N_0	Signal-to-noise ratio of an additive white Gaussian noise channel
	$\gamma_t(S_r, S_s)$	State transition metric into the BCJR decoder for states S_r to S_s at
	11(1) 5)	time t
	$\Gamma_t(S_r, S_s)$	LLR of $\gamma_t(S_r, S_s)$
	G	Code generator matrix
	h	Row (check node) degree distribution of an irregular LDPC
		parity-check matrix
	h_i	Fraction of Tanner graph check nodes that are degree <i>i</i>
	H	Code parity-check matrix
	I(X;Y)	The mutual information between X and Y
	I_x	Identity matrix of size x
	I _{max}	Maximum number of decoder iterations
	k	Number of input bits to a convolutional encoder at each time
		instant
	$k_{\rm O}$	k for the outer code in a serially concatenated code system
	k_{I}	k for the inner code in a serially concatenated code system
	k_i	k for the <i>i</i> th code in a parallel concatenated code system
	K	Code dimension (length of the messages)
	$K_{\rm O}$	K for the outer code in a serially concatenated code system
	$K_{\rm I}$	<i>K</i> for the inner code in a serially concatenated code system
	K_i	K for the <i>i</i> th code in a parallel concatenated code system
	$\lambda(x)$	The (edge perspective) bit node degree distribution an irregular LDPC code
	λ_i	Fraction of Tanner graph edges connected to a degree- <i>i</i> bit node
	l	Iteration number
	L	Vector containing the LLRs of the decoded bits
	L(x)	Log likelihood ratio of x
	log	Logarithm to the base <i>e</i>

Notation

\log_2	Logarithm to the base 2
m	Number of parity-check equations in a block code
$m_t(S_r, S_s)$	State transition metric calculated by the BCJR decoder for states
	S_r to S_s at time t
M_i	Message from the <i>i</i> th bit node
$M_{i,i}$	Message from the <i>i</i> th bit node to the <i>j</i> th check node
n	Number of output bits from a convolutional encoder at each time
	instant
n _O	<i>n</i> for the outer code in a serially concatenated code system
n_{I}	<i>n</i> for the inner code in a serially concatenated code system
n_i	<i>n</i> for the <i>i</i> th code in a parallel concatenated code system
N	Code length (length of the codewords)
N_O	N for the outer code in a serially concatenated code system
N_I	N for the inner code in a serially concatenated code system
N_i	N for the <i>i</i> th code in a parallel concatenated code system
\oplus	Modulo-2 addition
П	Permutation sequence
π_i	<i>i</i> th element of permutation sequence
р	Binary vector containing the parity bits
р	Weight of the parity bits in a binary codeword
p(x)	Probability of <i>x</i>
Р	Matrix giving a puncturing pattern
q	Repetition parameter of an RA code
Q(x)	The error function
$\rho(x)$	The (edge perspective) check node degree distribution of an
	irregular LDPC code
$ ho_i$	Fraction of Tanner graph edges connected to a degree- <i>i</i> check
	node
r	Code rate
R	Vector containing the LLRs of the received bits
σ^2	Variance of the additive white Gaussian noise
$S_t^{(l)}$	Value of the i th shift register element at time t in a convolutional
	encoder
S	Binary vector containing the bits at the output of the RA code
	combiner
S	Syndrome of a parity-check code
S	Convolutional encoder state
t	Time elapsed
$T_{(i)}$	Number of trellis segments
$u_t^{(i)}$	Value of the message bit input at time <i>t</i> to the <i>i</i> th input of the
	convolutional encoder

xviii	Notation
u	Binary vector containing the message bits
û	Binary vector containing the hard decisions on the decoded message bits
v	Memory order of a convolutional encoder
v_i	Fraction of Tanner graph bit nodes which are degree <i>i</i>
v	Binary vector containing the repeated message bits of an RA code

- v Column (bit node) degree distribution of an irregular LDPC parity-check matrix
- w Weight of a binary message
- w_{c} Column weight (bit node degree) of a regular LDPC parity-check matrix
- $w_{\rm r}$ Row weight (check node degree) of a regular LDPC parity-check matrix
- **x** Vector containing the transmitted bits $\in \{+1, -1\}$
- y Vector containing the values received from the channel
- z Vector containing the additive white Gaussian noise

Commonly used abbreviations

APP	a posteriori probability
ARA	accumulate-repeat-accumulate
BCJR	Bahl, Cock, Jelenik and Raviv (algorithm)
BER	bit error rate
BEC	binary erasure channel
DE	density evolution
EXIT	extrinsic information transfer
BI-AWGN	binary input additive white Gaussian noise
BSC	binary symmetric channel
FIR	finite impulse response
FL	finite length
IIR	infinite impulse response
IOWEF	input-output weight enumerating function
IRA	irregular repeat-accumulate
IRWEF	input-redundancy weight enumerating function
LDPC	low-density parity-check
LLR	log-likelihood ratio
MAP	maximum a posteriori probability
ML	maximum likelihood
RA	repeat-accumulate
SC	serially concatenated
SNR	signal-to-noise ratio
WER	word error rate
WEF	weight enumerating function