Introduction to Algebraic Geometry

Algebraic geometry has a reputation for being difficult and inaccessible, even among mathematicians! This must be overcome. The subject is central to pure mathematics, and applications in fields like physics, computer science, statistics, engineering, and computational biology are increasingly important. This book is based on courses given at Rice University and the Chinese University of Hong Kong, introducing algebraic geometry to a diverse audience consisting of advanced undergraduate and beginning graduate students in mathematics, as well as researchers in related fields.

For readers with a grasp of linear algebra and elementary abstract algebra, the book covers the fundamental ideas and techniques of the subject and places these in a wider mathematical context. However, a full understanding of algebraic geometry requires a good knowledge of guiding classical examples, and this book offers numerous exercises fleshing out the theory. It introduces Gröbner bases early on and offers algorithms for almost every technique described. Both students of mathematics and researchers in related areas benefit from the emphasis on computational methods and concrete examples.

Brendan Hassett is Professor of Mathematics at Rice University, Houston

Introduction to Algebraic Geometry

Brendan Hassett

Department of Mathematics, Rice University, Houston

© Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521870948

© Brendan Hassett 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-87094-8 hardback ISBN-13 978-0-521-691413 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Eileen and William

Contents

	Pref	face	xi
1	Guiding problems		
	1.1	Implicitization	1
	1.2	Ideal membership	4
	1.3	Interpolation	5
	1.4	Exercises	8
2	Divi	sion algorithm and Gröbner bases	11
	2.1	Monomial orders	11
	2.2	Gröbner bases and the division algorithm	13
	2.3	Normal forms	16
	2.4	Existence and chain conditions	19
	2.5	Buchberger's Criterion	22
	2.6	Syzygies	26
	2.7	Exercises	29
3	Affine varieties		33
	3.1	Ideals and varieties	33
	3.2	Closed sets and the Zariski topology	38
	3.3	Coordinate rings and morphisms	39
	3.4	Rational maps	43
	3.5	Resolving rational maps	46
	3.6	Rational and unirational varieties	50
	3.7	Exercises	53
4	Elimination		57
	4.1	Projections and graphs	57
	4.2	Images of rational maps	61
	4.3	Secant varieties, joins, and scrolls	65
	4.4	Exercises	68

vii

viii CONTENTS

5	Resultants		
	5.1	Common roots of univariate polynomials	73
	5.2	The resultant as a function of the roots	80
	5.3	Resultants and elimination theory	82
	5.4	Remarks on higher-dimensional resultants	84
	5.5	Exercises	87
6	Irre	ducible varieties	89
	6.1	Existence of the decomposition	90
	6.2	Irreducibility and domains	91
	6.3	Dominant morphisms	92
	6.4	Algorithms for intersections of ideals	94
	6.5	Domains and field extensions	96
	6.6	Exercises	98
7	Null	101	
	7.1	Statement of the Nullstellensatz	102
	7.2	Classification of maximal ideals	103
	7.3	Transcendence bases	104
	7.4	Integral elements	106
	7.5	Proof of Nullstellensatz I	108
	7.6	Applications	109
	7.7	Dimension	111
	7.8	Exercises	112
8	Primary decomposition		116
	8.1	Irreducible ideals	116
	8.2	Quotient ideals	118
	8.3	Primary ideals	119
	8.4	Uniqueness of primary decomposition	122
	8.5	An application to rational maps	128
	8.6	Exercises	131
9	Projective geometry		134
	9.1	Introduction to projective space	134
	9.2	Homogenization and dehomogenization	137
	9.3	Projective varieties	140
	9.4	Equations for projective varieties	141
	9.5	Projective Nullstellensatz	144
	9.6	Morphisms of projective varieties	145
	9.7	Products	154
	9.8	Abstract varieties	156
	9.9	Exercises	162

	CONTENTS	ix
10	Projective elimination theory	169
	10.1 Homogeneous equations revisited	170
	10.2 Projective elimination ideals	171
	10.3 Computing the projective elimination ideal	174
	10.4 Images of projective varieties are closed	175
	10.5 Further elimination results	176
	10.6 Exercises	177
11	Parametrizing linear subspaces	181
	11.1 Dual projective spaces	181
	11.2 Tangent spaces and dual varieties	182
	11.3 Grassmannians: Abstract approach	187
	11.4 Exterior algebra	191
	11.5 Grassmannians as projective varieties	197
	11.6 Equations for the Grassmannian	199
	11.7 Exercises	202
12	Hilbert polynomials and the Bezout Theorem	207
	12.1 Hilbert functions defined	207
	12.2 Hilbert polynomials and algorithms	211
	12.3 Intersection multiplicities	215
	12.4 Bezout Theorem	219
	12.5 Interpolation problems revisited	225
	12.6 Classification of projective varieties	229
	12.7 Exercises	231
	Appendix A Notions from abstract algebra	235
	A.1 Rings and homomorphisms	235
	A.2 Constructing new rings from old	236
	A.3 Modules	238
	A.4 Prime and maximal ideals	239
	A.5 Factorization of polynomials	240
	A.6 Field extensions	242
	A.7 Exercises	244
	Bibliography	246
	Index	249

Preface

This book is an introduction to algebraic geometry, based on courses given at Rice University and the Institute of Mathematical Sciences of the Chinese University of Hong Kong from 2001 to 2006. The audience for these lectures was quite diverse, ranging from second-year undergraduate students to senior professors in fields like geometric modeling or differential geometry. Thus the algebraic prerequisites are kept to a minimum: a good working knowledge of linear algebra is crucial, along with some familiarity with basic concepts from abstract algebra. A semester of formal training in abstract algebra is more than enough, provided it touches on rings, ideals, and factorization. In practice, motivated students managed to learn the necessary algebra as they went along.

There are two overlapping and intertwining paths to understanding algebraic geometry. The first leads through sheaf theory, cohomology, derived functors and categories, and abstract commutative algebra – and these are just the prerequisites! We will not take this path. Rather, we will focus on specific examples and limit the formalism to what we need for these examples. Indeed, we will emphasize the strand of the formalism most useful for computations: We introduce *Gröbner bases* early on and develop algorithms for almost every technique we describe. The development of algebraic geometry since the mid 1990s vindicates this approach. The term 'Groebner' occurs in 1053 Math Reviews from 1995 to 2004, with most of these occurring in the last five years. The development of computers fast enough to do significant symbolic computations has had a profound influence on research in the field.

A word about what this book will *not* do: We develop computational techniques as a means to the end of learning algebraic geometry. However, we will not dwell on the technical questions of computability that might interest a computer scientist. We will also not spend time introducing the syntax of any particular computer algebra system. However, it is necessary that the reader be willing to carry out involved computations using elementary algebra, preferably with the help of a computer algebra system such as *Maple*, *Macaulay II*, or *Singular*.

Our broader goal is to display the core techniques of algebraic geometry in their natural habitat. These are developed systematically, with the necessary commutative algebra integrated with the geometry. Classical topics like resultants and elimination

xii PREFACE

theory, are discussed in parallel with affine varieties, morphisms, and rational maps. Important examples of projective varieties (Grassmannians, Veronese varieties, Segre varieties) are emphasized, along with the matrix and exterior algebra needed to write down their defining equations.

It must be said that this book is not a comprehensive introduction to all of algebraic geometry. Shafarevich's book [37, 38] comes closest to this ideal; it addresses many important issues we leave untouched. Most other standard texts develop the material from a specific point of view, e.g., sheaf cohomology and schemes (Hartshorne [19]), classical geometry (Harris [17]), complex algebraic differential geometry (Griffiths and Harris [14]), or algebraic curves (Fulton [11]).

Acknowledgments

I am grateful to Ron Goldman, Donghoon Hyeon, Frank Jones, Sándor Kovács, Manuel Ladra, Dajiang Liu, Miles Reid, Burt Totaro, Yuri Tschinkel, and Fei Xu for helpful suggestions and corrections. I am indebted to Bradley Duesler for his comments on drafts of the text. My research has been supported by the Alfred P. Sloan Foundation and the National Science Foundation (DMS 0554491, 0134259, and 0196187).

The treatment of topics in this book owes a great deal to my teachers and the fine textbooks they have written: Serge Lang [27], Donal O'Shea [8], Joe Harris [17], David Eisenbud [9], and William Fulton [11]. My first exposure to algebraic geometry was through drafts of [8]; it has had a profound influence on how I teach the subject.