
Introduction to Algebraic Geometry

Algebraic geometry has a reputation for being difficult and inaccessible, even among mathe-
maticians! This must be overcome. The subject is central to pure mathematics, and applications
in fields like physics, computer science, statistics, engineering, and computational biology are
increasingly important. This book is based on courses given at Rice University and the Chinese
University of Hong Kong, introducing algebraic geometry to a diverse audience consisting of
advanced undergraduate and beginning graduate students in mathematics, as well as researchers
in related fields.

For readers with a grasp of linear algebra and elementary abstract algebra, the book covers
the fundamental ideas and techniques of the subject and places these in a wider mathematical
context. However, a full understanding of algebraic geometry requires a good knowledge of
guiding classical examples, and this book offers numerous exercises fleshing out the theory. It
introduces Gröbner bases early on and offers algorithms for almost every technique described.
Both students of mathematics and researchers in related areas benefit from the emphasis on
computational methods and concrete examples.
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Preface

This book is an introduction to algebraic geometry, based on courses given at Rice
University and the Institute of Mathematical Sciences of the Chinese University of
Hong Kong from 2001 to 2006. The audience for these lectures was quite diverse,
ranging from second-year undergraduate students to senior professors in fields like
geometric modeling or differential geometry. Thus the algebraic prerequisites are kept
to a minimum: a good working knowledge of linear algebra is crucial, along with some
familiarity with basic concepts from abstract algebra. A semester of formal training
in abstract algebra is more than enough, provided it touches on rings, ideals, and
factorization. In practice, motivated students managed to learn the necessary algebra
as they went along.

There are two overlapping and intertwining paths to understanding algebraic geo-
metry. The first leads through sheaf theory, cohomology, derived functors and cat-
egories, and abstract commutative algebra – and these are just the prerequisites! We
will not take this path. Rather, we will focus on specific examples and limit the
formalism to what we need for these examples. Indeed, we will emphasize the strand
of the formalism most useful for computations: We introduce Gröbner bases early on
and develop algorithms for almost every technique we describe. The development of
algebraic geometry since the mid 1990s vindicates this approach. The term ‘Groebner’
occurs in 1053 Math Reviews from 1995 to 2004, with most of these occurring in the
last five years. The development of computers fast enough to do significant symbolic
computations has had a profound influence on research in the field.

A word about what this book will not do: We develop computational techniques as
a means to the end of learning algebraic geometry. However, we will not dwell on the
technical questions of computability that might interest a computer scientist. We will
also not spend time introducing the syntax of any particular computer algebra system.
However, it is necessary that the reader be willing to carry out involved computations
using elementary algebra, preferably with the help of a computer algebra system such
as Maple, Macaulay II, or Singular.

Our broader goal is to display the core techniques of algebraic geometry in their
natural habitat. These are developed systematically, with the necessary commutative
algebra integrated with the geometry. Classical topics like resultants and elimination
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xii PREFACE

theory, are discussed in parallel with affine varieties, morphisms, and rational maps.
Important examples of projective varieties (Grassmannians, Veronese varieties, Segre
varieties) are emphasized, along with the matrix and exterior algebra needed to write
down their defining equations.

It must be said that this book is not a comprehensive introduction to all of algebraic
geometry. Shafarevich’s book [37, 38] comes closest to this ideal; it addresses many
important issues we leave untouched. Most other standard texts develop the material
from a specific point of view, e.g., sheaf cohomology and schemes (Hartshorne [19]),
classical geometry (Harris [17]), complex algebraic differential geometry (Griffiths
and Harris [14]), or algebraic curves (Fulton [11]).
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