Contents

Preface
Preface xvii

Introduction
Computational biology 1
Systems biology 2
Organization of this book 3

Part I Background material
5

1 Concepts from physical chemistry 7
 1.1 Macroscopic thermodynamics 7
 1.2 Isolated systems and the Boltzmann definition of entropy 9
 1.3 Closed isothermal systems 10
 1.3.1 Helmholtz free energy 10
 1.3.2 Entropy in an NVT system 13
 1.3.3 Interpretation of temperature in the NVT system 13
 1.4 Isothermal isobaric systems 14
 1.4.1 Gibbs free energy 14
 1.4.2 Entropy in an NPT system 15
 1.5 Thermodynamic driving forces in different systems 15
 1.6 Applications and conventions in chemical thermodynamics 16
 1.6.1 Systems of non-interacting molecules 16
 1.6.2 Gibbs free energy of chemical reactions and chemical equilibrium 17
 1.7 Applications of thermodynamics in biology 19
 1.7.1 Enzyme reaction mechanisms 19
 1.7.2 Electrostatic potential across a cell membrane 21

2 Conventions and calculations for biochemical systems 24
 2.1 Conventional notation in biochemical thermodynamics 24
 2.2 Reactants and reactions in biochemistry 26
Table of Contents

2.2.1 An example of a biochemical reactant 26
2.2.2 An example of a biochemical reaction 28
2.3 Effects of pH and ion binding on biochemical reaction thermodynamics 32
2.4 Effects of temperature on biochemical reaction thermodynamics 34
2.5 Effects of ionic strength on biochemical reaction thermodynamics 35
2.6 Treatment of CO₂ in biochemical reactions 36
2.7 pH variation in vivo 38
 2.7.1 In vivo deviation from the standard state 38
 2.7.2 The bicarbonate system in vivo 38
3 Chemical kinetics and transport processes 41
 3.1 Well mixed systems 42
 3.1.1 Differential equations from mass conservation 42
 3.1.2 Reaction thermodynamics revisited 43
 3.1.3 Reaction kinetics 45
 3.1.4 Using computers to simulate chemical kinetics 53
 3.2 Transport processes 58
 3.2.1 Advection 59
 3.2.2 Diffusion 60
 3.2.3 Drift 60
 3.2.4 Example: passive permeation across a membrane 61
 3.2.5 Example: coupled diffusion and drift in a membrane 62
PartII Analysis and modeling of biochemical systems 67
4 Enzyme-catalyzed reactions 69
 4.1 Simple Michaelis–Menten reactions revisited 70
 4.1.1 Steady state enzyme turnover kinetics 70
 4.1.2 Reversible Michaelis–Menten kinetics 73
 4.1.3 Non-equilibrium steady states and cycle kinetics 74
 4.2 Transient enzyme kinetics 76
 4.2.1 Rapid pre-equilibrium 76
 4.2.2 A singular perturbation approach to Michaelis–Menten kinetics 78
 4.3 Enzyme with multiple binding sites: cooperativity 81
 4.3.1 Sigmoidal equilibrium binding 81
 4.3.2 Cooperativity in enzyme kinetics 82
 4.3.3 The Hill coefficient 83
 4.3.4 Delays and hysteresis in transient kinetics 84
 4.4 Enzymatic fluxes with more complex kinetics 86
 4.4.1 Reciprocal of flux: the mean time of turnover 87
Contents

4.4.2 The method of King and Altman 89
4.4.3 Enzyme-catalyzed bimolecular reactions 92
4.4.4 Example: enzyme kinetics of citrate synthase 96

5 Biochemical signaling modules 105
5.1 Kinetic theory of the biochemical switch 105
 5.1.1 The phosphorylation–dephosphorylation cycle 108
 5.1.2 Ultrasensitivity and the zeroth-order phosphorylation–dephosphorylation cycle 111
 5.1.3 Substrate selectivity of the phosphorylation–dephosphorylation switch 113
5.1.4 The GTPase signaling module 115
5.1.5 Duration of switch activation and a biochemical timer 117
5.1.6 Synergistic action of kinases and phosphatases and the phosphorylation energy hypothesis 121
5.2 Biochemical regulatory oscillations 122
 5.2.1 Gene regulatory networks and the repressilator 122
 5.2.2 Biochemical oscillations in cell biology 125

6 Biochemical reaction networks 128
6.1 Formal approach to biochemical reaction kinetics 129
 6.1.1 Establishing the components of the biochemical network model 129
 6.1.2 Determining expressions for biochemical fluxes for the reactions 131
 6.1.3 Determining the differential equations 132
 6.1.4 Computational implementation and testing 137
6.2 Kinetic model of the TCA cycle 140
 6.2.1 Overview 140
 6.2.2 Components of the TCA cycle reaction network 140
 6.2.3 Flux expressions for TCA cycle reaction network 143
 6.2.4 Differential equations for TCA cycle reaction network 152
 6.2.5 Simulation of TCA cycle kinetics 153
6.3 Control and stability in biochemical networks 155
 6.3.1 Linear analysis near a steady state 156
 6.3.2 Metabolic control analysis 157

7 Coupled biochemical systems and membrane transport 162
7.1 Transporters 162
 7.1.1 Active versus passive transport 163
 7.1.2 Examples: a uniporter and an antiporter 163
7.2 Transport of charged species across membranes 168
 7.2.1 Thermodynamics of charged species transport 168
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2 Electrogenic transporters</td>
<td>170</td>
</tr>
<tr>
<td>7.3 Electrophysiology modeling</td>
<td>172</td>
</tr>
<tr>
<td>7.3.1 Ion channels</td>
<td>172</td>
</tr>
<tr>
<td>7.3.2 Differential equations for membrane potential</td>
<td>173</td>
</tr>
<tr>
<td>7.3.3 The Hodgkin–Huxley model</td>
<td>174</td>
</tr>
<tr>
<td>7.4 Large-scale example: model of oxidative ATP synthesis</td>
<td>178</td>
</tr>
<tr>
<td>7.4.1 Model of oxidative phosphorylation</td>
<td>180</td>
</tr>
<tr>
<td>7.4.2 Model behavior</td>
<td>187</td>
</tr>
<tr>
<td>7.4.3 Applications to in vivo systems</td>
<td>188</td>
</tr>
<tr>
<td>Part III Special topics</td>
<td>193</td>
</tr>
<tr>
<td>8 Spatially distributed systems and reaction–diffusion modeling</td>
<td>195</td>
</tr>
<tr>
<td>8.1 Diffusion-driven transport of solutes in cells and tissue</td>
<td>195</td>
</tr>
<tr>
<td>8.1.1 The diffusion equation: assumptions and applications</td>
<td>196</td>
</tr>
<tr>
<td>8.1.2 Oxygen transport to tissue and the Krogh–Erlang model</td>
<td>197</td>
</tr>
<tr>
<td>8.1.3 Facilitated diffusion</td>
<td>203</td>
</tr>
<tr>
<td>8.2 Advection–diffusion modeling of solute transport in tissues</td>
<td>209</td>
</tr>
<tr>
<td>8.2.1 Axially distributed models of blood–tissue exchange</td>
<td>211</td>
</tr>
<tr>
<td>8.2.2 Analysis of solute transport in organs</td>
<td>214</td>
</tr>
<tr>
<td>8.2.3 Whole-organ metabolic modeling</td>
<td>216</td>
</tr>
<tr>
<td>8.3 Three-dimensional modeling</td>
<td>216</td>
</tr>
<tr>
<td>9 Constraint-based analysis of biochemical systems</td>
<td>220</td>
</tr>
<tr>
<td>9.1 Motivation for constraint-based modeling and analysis</td>
<td>221</td>
</tr>
<tr>
<td>9.2 Mass-balance constraints</td>
<td>221</td>
</tr>
<tr>
<td>9.2.1 Mathematical representation for flux balance analysis</td>
<td>221</td>
</tr>
<tr>
<td>9.2.2 Energy metabolism in E. coli</td>
<td>223</td>
</tr>
<tr>
<td>9.3 Thermodynamic constraints</td>
<td>227</td>
</tr>
<tr>
<td>9.3.1 The basic idea</td>
<td>228</td>
</tr>
<tr>
<td>9.3.2 Mathematical details</td>
<td>230</td>
</tr>
<tr>
<td>9.3.3 Feasible sign patterns</td>
<td>232</td>
</tr>
<tr>
<td>9.4 Further concepts in constraint-based analysis</td>
<td>234</td>
</tr>
<tr>
<td>9.4.1 Feasible concentrations from potentials</td>
<td>234</td>
</tr>
<tr>
<td>9.4.2 Biochemical conductance and enzyme activity</td>
<td>235</td>
</tr>
<tr>
<td>9.4.3 Conserved metabolite pools</td>
<td>235</td>
</tr>
<tr>
<td>9.4.4 Biological objective functions and optimization</td>
<td>236</td>
</tr>
<tr>
<td>9.4.5 Metabolic engineering</td>
<td>238</td>
</tr>
<tr>
<td>9.4.6 Incorporating metabolic control analysis</td>
<td>238</td>
</tr>
<tr>
<td>10 Biomacromolecular structure and molecular association</td>
<td>240</td>
</tr>
<tr>
<td>10.1 Protein structures and α-helices</td>
<td>241</td>
</tr>
</tbody>
</table>
Contents

10.1.1 The theory of helix-coil transition 242
10.2 Protein filaments and actin polymerization 248
 10.2.1 Nucleation and critical monomer concentration 249
 10.2.2 Theory of nucleation-elongation of actin polymerization 250
10.3 Macromolecular association 252
 10.3.1 A combinatorial theory of macromolecular association 252
 10.3.2 Statistical thermodynamics of association 256
10.4 A dynamics theory of association 257
 10.4.1 Transition-state theory and rate constants 259
11 Stochastic biochemical systems and the chemical master equation 261
 11.1 A brief introduction to the chemical master equation 262
 11.2 Essential materials from probability theory 265
 11.2.1 The law of large numbers 265
 11.2.2 Continuous time Markov chain 265
 11.3 Single molecules and stochastic models for unimolecular reaction networks 267
 11.3.1 Rate equations for two-state conformational change 267
 11.3.2 Michaelis–Menten kinetics of single enzymes 270
 11.4 Non-linear biochemical reactions with fluctuations 271
 11.4.1 Chemical master equation for Michaelis–Menten kinetics 271
 11.4.2 A non-linear biochemical reaction system with concentration fluctuations 273
 11.4.3 Bistability and non-equilibrium steady state 276
 11.5 The CME model for protein synthesis in a single cell 278
12 Appendix: the statistical basis of thermodynamics 282
 12.1 The NVE ensemble 282
 12.2 The NVT ensemble 287
 12.2.1 Boltzmann statistics and the canonical partition function: a derivation 287
 12.2.2 Another derivation 288
 12.2.3 One more derivation 289
 12.2.4 Equipartition 291
 12.3 The NPT ensemble 293
Bibliography 296
Index 307