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Foundations

1.1 Classical effective orbifolds

Orbifolds are traditionally viewed as singular spaces that are locally modeled
on a quotient of a smooth manifold by the action of a finite group. In algebraic
geometry, they are often referred to as varieties with quotient singularities. This
second point of view treats an orbifold singularity as an intrinsic structure of
the space. For example, a codimension one orbifold singularity can be treated
as smooth, since we can remove it by an analytic change of coordinates. This
point of view is still important when we consider resolutions or deformations
of orbifolds. However, when working in the topological realm, it is often more
useful to treat the singularities as an additional structure – an orbifold structure –
on an underlying space in the same way that we think of a smooth structure as
an additional structure on a topological manifold. In particular, a topological
space is allowed to have several different orbifold structures. Our introduction
to orbifolds will reflect this latter viewpoint; the reader may also wish to consult
the excellent introductions given by Moerdijk [112, 113].

The original definition of an orbifold was due to Satake [139], who called
them V -manifolds. To start with, we will provide a definition of effective orb-
ifolds equivalent to Satake’s original one. Afterwards, we will provide a refine-
ment which will encompass the more modern view of these objects. Namely,
we will also seek to explain their definition using the language of groupoids,
which, although it has the drawback of abstractness, does have important tech-
nical advantages. For one thing, it allows us to easily deal with ineffective
orbifolds, which are generically singular. Such orbifolds are unavoidable in
nature. For instance, the moduli stack of elliptic curves [117] (see Exam-
ple 1.17) has a Z/2Z singularity at a generic point. The definition below appears
in [113].
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2 Foundations

Definition 1.1 Let X be a topological space, and fix n ≥ 0.

� An n-dimensional orbifold chart on X is given by a connected open subset
Ũ ⊆ R

n, a finite group G of smooth automorphisms of Ũ , and a map φ :
Ũ → X so that φ is G-invariant and induces a homeomorphism of Ũ/G onto
an open subset U ⊆ X.

� An embedding λ : (Ũ ,G, φ) ↪→ (Ṽ , H,ψ) between two such charts is a
smooth embedding λ : Ũ ↪→ Ṽ with ψλ = φ.

� An orbifold atlas on X is a family U = {(Ũ ,G, φ)} of such charts, which
cover X and are locally compatible: given any two charts (Ũ ,G, φ) for
U = φ(Ũ ) ⊆ X and (Ṽ , H,ψ) for V ⊆ X, and a point x ∈ U ∩ V , there
exists an open neighborhood W ⊆ U ∩ V of x and a chart (W̃ ,K,µ) for W

such that there are embeddings (W̃ ,K,µ) ↪→ (Ũ ,G, φ) and (W̃ ,K,µ) ↪→
(Ṽ , H,ψ).

� An atlas U is said to refine another atlas V if for every chart in U there
exists an embedding into some chart of V . Two orbifold atlases are said to be
equivalent if they have a common refinement.

We are now ready to provide a definition equivalent to the classical definition
of an effective orbifold.

Definition 1.2 An effective orbifold X of dimension n is a paracompact Haus-
dorff space X equipped with an equivalence class [U] of n-dimensional orbifold
atlases.

There are some important points to consider about this definition, which we
now list. Throughout this section we will always assume that our orbifolds are
effective.

1. We are assuming that for each chart (Ũ ,G, φ), the group G is acting
smoothly and effectively1 on Ũ . In particular G will act freely on a dense
open subset of Ũ .

2. Note that since smooth actions are locally smooth (see [31, p. 308]), any
orbifold has an atlas consisting of linear charts, by which we mean charts of
the form (Rn,G, φ), where G acts on R

n via an orthogonal representation
G ⊂ O(n).

3. The following is an important technical result for the study of orbifolds
(the proof appears in [113]): given two embeddings of orbifold charts λ,µ :
(Ũ ,G, φ) ↪→ (Ṽ , H,ψ), there exists a unique h ∈ H such that µ = h · λ.

1 Recall that a group action is effective if gx = x for all x implies that g is the identity. For basic
results on topological and Lie group actions, we refer the reader to Bredon [31] and tom Dieck
[152].
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1.1 Classical effective orbifolds 3

4. As a consequence of the above, an embedding of orbifold charts λ :
(Ũ ,G, φ) ↪→ (Ṽ , H,ψ) induces an injective group homomorphism, also
denoted by λ : G ↪→ H . Indeed, any g ∈ G can be regarded as an embed-
ding from (Ũ ,G, φ) into itself. Hence for the two embeddings λ and λ · g,
there exists a unique h ∈ H such that λ · g = h · λ. We denote this element
h = λ(g); clearly this correspondence defines the desired monomorphism.

5. Another key technical point is the following: given an embedding as above,
if h ∈ H is such that λ(Ũ ) ∩ h · λ(Ũ ) �= ∅, then h ∈ im λ, and so λ(Ũ )
= h · λ(Ũ ).

6. If (Ũ ,G, φ) and (Ṽ , H,ψ) are two charts for the same orbifold struc-
ture on X, and if Ũ is simply connected, then there exists an embedding
(Ũ ,G, φ) ↪→ (Ṽ , H,ψ) whenever φ(Ũ ) ⊂ ψ(Ṽ ).

7. Every orbifold atlas for X is contained in a unique maximal one, and two
orbifold atlases are equivalent if and only if they are contained in the same
maximal one. As with manifolds, we tend to work with a maximal atlas.

8. If the finite group actions on all the charts are free, then X is locally
Euclidean, hence a manifold.

Next we define the notion of smooth maps between orbifolds.

Definition 1.3 Let X = (X,U) and Y = (Y,V) be orbifolds. A map f : X →
Y is said to be smooth if for any point x ∈ X there are charts (Ũ ,G, φ) around
x and (Ṽ , H,ψ) around f (x), with the property that f maps U = φ(Ũ ) into
V = ψ(Ṽ ) and can be lifted to a smooth map f̃ : Ũ → Ṽ with ψf̃ = f φ.

Using this we can define the notion of diffeomorphism of orbifolds.

Definition 1.4 Two orbifolds X and Y are diffeomorphic if there are smooth
maps of orbifolds f : X → Y and g : Y → X with f ◦ g = 1Y and g ◦ f

= 1X.

A more stringent definition for maps between orbifolds is required if we
wish to preserve fiber bundles (as well as sheaf-theoretic constructions) on
orbifolds. The notion of an orbifold morphism will be introduced when we
discuss orbibundles; for now we just wish to mention that a diffeomorphism
of orbifolds is in fact an orbifold morphism, a fact that ensures that orbifold
equivalence behaves as expected.

Let X denote the underlying space of an orbifold X , and let x ∈ X. If
(Ũ ,G, φ) is a chart such that x = φ(y) ∈ φ(Ũ ), let Gy ⊆ G denote the isotropy
subgroup for the point y. We claim that up to conjugation, this group does not de-
pend on the choice of chart. Indeed, if we used a different chart, say (Ṽ , H,ψ),
then by our definition we can find a third chart (W̃ ,K,µ) around x together with
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4 Foundations

embeddings λ1 : (W̃ ,K,µ) ↪→ (Ũ ,G, φ) and λ2 : (W̃ ,K,µ) ↪→ (Ṽ , H,ψ).
As we have seen, these inclusions are equivariant with respect to the induced
injective group homomorphisms; hence the embeddings induce inclusions
Ky ↪→ Gy and Ky ↪→ Hy . Now applying property 5 discussed above, we see
that these maps must also be onto, hence we have an isomorphism Hy

∼= Gy .
Note that if we chose a different preimage y ′, then Gy is conjugate to Gy ′ .
Based on this, we can introduce the notion of a local group at a point x ∈ X.

Definition 1.5 Let x ∈ X, where X = (X,U) is an orbifold. If (Ũ ,G,ψ) is
any local chart around x = ψ(y), we define the local group at x as

Gx = {g ∈ G | gy = y}.
This group is uniquely determined up to conjugacy in G.

We now use the notion of local group to define the singular set of the orbifold.

Definition 1.6 For an orbifold X = (X,U), we define its singular set as

�(X ) = {x ∈ X | Gx �= 1}.
This subspace will play an important role in what follows.
Before discussing any further general facts about orbifolds, it seems useful

to discuss the most natural source of examples for orbifolds, namely, compact
transformation groups. Let G denote a compact Lie group acting smoothly,
effectively and almost freely (i.e., with finite stabilizers) on a smooth manifold
M . Again using the fact that smooth actions on manifolds are locally smooth,
we see that given x ∈ M with isotropy subgroup Gx , there exists a chart
U ∼= R

n containing x that is Gx-invariant. The orbifold charts are then simply
(U,Gx, π ), where π : U → U/Gx is the projection map. Note that the quotient
space X = M/G is automatically paracompact and Hausdorff. We give this
important situation a name.

Definition 1.7 An effective quotient orbifold X = (X,U) is an orbifold given
as the quotient of a smooth, effective, almost free action of a compact Lie
group G on a smooth manifold M; here X = M/G and U is constructed from
a manifold atlas using the locally smooth structure.

An especially attractive situation arises when the group G is finite; following
established tradition, we single out this state of affairs.

Definition 1.8 If a finite group G acts smoothly and effectively on a smooth
manifold M , the associated orbifoldX = (M/G,U) is called an effective global
quotient.
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1.2 Examples 5

More generally, if we have a compact Lie group acting smoothly and almost
freely on a manifold M , then there is a group extension

1 → G0 → G → Geff → 1,

where G0 ⊂ G is a finite group and Geff acts effectively on M . Although the orbit
spaces M/G and M/Geff are identical, the reader should note that the structure
on X = M/G associated to the full G action will not be a classical orbifold,
as the constant kernel G0 will appear in all the charts. However, the main
properties associated to orbifolds easily apply to this situation, an indication
that perhaps a more flexible notion of orbifold is required – we will return to
this question in Section 1.4. For a concrete example of this phenomenon, see
Example 1.17.

1.2 Examples

Orbifolds are of interest from several different points of view, including repre-
sentation theory, algebraic geometry, physics, and topology. One reason for this
is the existence of many interesting examples constructed from different fields
of mathematics. Many new phenomena (and subsequent new theorems) were
first observed in these key examples, and they are at the heart of this subject.

Given a finite group G acting smoothly on a compact manifold M , the
quotient M/G is perhaps the most natural example of an orbifold. We will
list a number of examples which are significant in the literature, all of which
arise as global quotients of an n-torus. To put them in context, we first describe
a general procedure for constructing group actions on T

n = (S1)n. The group
GLn(Z) acts by matrix multiplication on R

n, taking the lattice Z
n to itself. This

then induces an action on T
n = (R/Z)n. In fact, one can easily show that the

map induced by looking at the action in homology, � : Aut(Tn) → GLn(Z),
is a split surjection. In particular, if G ⊂ GLn(Z) is a finite subgroup, then this
defines an effective G-action on T

n. Note that by construction the G-action
lifts to a proper action of a discrete group � on R

n; this is an example of a
crystallographic group, and it is easy to see that it fits into a group extension
of the form 1 → (Z)n → � → G → 1. The first three examples are all special
cases of this construction, but are worthy of special attention due to their role
in geometry and physics (we refer the reader to [4] for a detailed discussion of
this class of examples).

Example 1.9 Let X = T
4/(Z/2Z), where the action is generated by the invo-

lution τ defined by

τ (eit1 , eit2 , eit3 , eit4 ) = (e−it1 , e−it2 , e−it3 , e−it4 ).
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6 Foundations

Note that under the construction above, τ corresponds to the matrix −I . This
orbifold is called the Kummer surface, and it has sixteen isolated singular
points.

Example 1.10 Let T
6 = C

3/�, where � is the lattice of integral points. Con-
sider (Z/2Z)2 acting on T

6 via a lifted action on C
3, where the generators σ1

and σ2 act as follows:

σ1(z1, z2, z3) = (−z1,−z2, z3),

σ2(z1, z2, z3) = (−z1, z2,−z3),

σ1σ2(z1, z2, z3) = (z1,−z2,−z3).

Our example is X = T
6/(Z/2Z)2. This example was considered by Vafa and

Witten [155].

Example 1.11 Let X = T
6/(Z/4Z). Here, the generator κ of Z/4Z acts on T

6

by

κ(z1, z2, z3) = (−z1, iz2, iz3).

This example has been studied by Joyce in [75], where he constructed five
different desingularizations of this singular space. The importance of this ac-
complishment lies in its relation to a conjecture of Vafa and Witten, which we
discuss in Chapter 4.

Algebraic geometry is another important source of examples of orbifolds.
Our first example of this type is the celebrated mirror quintic.

Example 1.12 Suppose that Y is a degree five hypersurface of CP 4 given by
a homogeneous equation

z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + φz0z1z2z3z4 = 0, (1.1)

where φ is a generic constant. Then Y admits an action of (Z/5Z)3. Indeed,
let λ be a primitive fifth root of unity, and let the generators e1, e2, and e3 of
(Z/5Z)3 act as follows:

e1(z0, z1, z2, z3, z4) = (λz0, z1, z2, z3, λ
−1z4),

e2(z0, z1, z2, z3, z4) = (z0, λz1, z2, z3, λ
−1z4),

e3(z0, z1, z2, z3, z4) = (z0, z1, λz2, z3, λ
−1z4).

The quotient X = Y/(Z/5Z)3 is called the mirror quintic.

Example 1.13 Suppose that M is a smooth manifold. One can form the sym-
metric product Xn = Mn/Sn, where the symmetric group Sn acts on Mn by

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87004-7 - Orbifolds and Stringy Topology
Alejandro Adem, Johann Leida and Yongbin Ruan
Excerpt
More information

http://www.cambridge.org/0521870046
http://www.cambridge.org
http://www.cambridge.org


1.2 Examples 7

permuting coordinates. Tuples of points have isotropy according to how many
repetitions they contain, with the diagonal being the fixed point set. This set
of examples has attracted a lot of attention, especially in algebraic geometry.
For the special case when M is an algebraic surface, Xn admits a beautiful
resolution, namely the Hilbert scheme of points of length n, denoted X[n]. We
will revisit this example later, particularly in Chapter 5.

Example 1.14 Let G be a finite subgroup of GLn(C) and let X = C
n/G; this

is a singular complex manifold called a quotient singularity.X has the structure
of an algebraic variety, arising from the algebra of G-invariant polynomials on
C

n. These examples occupy an important place in algebraic geometry related
to McKay correspondence. In later applications, it will often be important to
assume that G ⊂ SLn(C), in which case C

n/G is said to be Gorenstein. We
note in passing that the Gorenstein condition is essentially the local version of
the definition of SL-orbifolds given on page 15.

Example 1.15 Consider

S
2n+1 =

{
(z0, . . . , zn) |

∑
i

|zi |2 = 1

}
⊆ C

n+1,

then we can let λ ∈ S
1 act on it by

λ(z0, . . . , zn) = (λa0z0, . . . , λ
anzn),

where the ai are coprime integers. The quotient

WP(a0, . . . , an) = S
2n+1/S

1

is called a weighted projective space, and it plays the role of the usual projective
space in orbifold theory. WP(1, a), is the famous teardrop, which is the easiest
example of a non-global quotient orbifold. We will use the orbifold fundamental
group to establish this later.

Example 1.16 Generalizing from the teardrop to other two-dimensional orb-
ifolds leads us to consider orbifold Riemann surfaces, a fundamental class of
examples that are not hard to describe. We need only specify the (isolated)
singular points and the order of the local group at each one. If xi is a singular
point with order mi , it is understood that the local chart at xi is D/Zmi

where
D is a small disk around zero and the action is e ◦ z = λz for e the generator
of Zmi

and λmi = 1.
Suppose that an orbifold Riemann surface � has genus g and k singular

points. Thurston [149] has shown that it is a global quotient if and only if
g + 2k ≥ 3 or g = 0 and k = 2 with m1 = m2. In any case, an orbifold Riemann
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8 Foundations

surface is always a quotient orbifold, as it can be expressed as X3/S
1, where

X3 is a 3-manifold called a Seifert fiber manifold (see [140] for more on Seifert
manifolds).

Example 1.17 Besides considering orbifold structures on a single surface, we
can also consider various moduli spaces – or rather, moduli stacks – of (non-
orbifold) curves. As we noted in the introduction to this chapter, these were
among the first orbifolds in which the importance of the additional structure
(such as isotropy groups) became evident [7]. For simplicity, we describe the
orbifold structure on the moduli space of elliptic curves.

For our purposes, elliptic curves may be defined to be those tori C/L

obtained as the quotient of the complex numbers C by a lattice of the form
L = Z + Zτ ⊂ C

∗, where τ ∈ C
∗ satisfies im τ > 0. Suppose we have two

elliptic curves C/L and C/L′, specified by elements τ and τ ′ in the Poincaré
upper half plane H = {z ∈ C | im z > 0}. Then C/L and C/L′ are isomorphic
if there is a matrix in SL2(Z) that takes τ to τ ′, where the action is given
by (

a b

c d

)
τ = aτ + b

cτ + d
.

The moduli stack or orbifold of elliptic curves is then the quotient H/SL2(Z).
This is a two-dimensional orbifold, although since the matrix − Id fixes every
point of H , the action is not effective. We could, however, replace G = SL2(Z)
by Geff = PSL2(Z) = SL2(Z)/(± Id) to obtain an associated effective orb-
ifold. The only points with additional isotropy are the two points corresponding
to τ = i and τ = e2πi/3 (which correspond to the square and hexagonal lattices,
respectively). The first is fixed by a cyclic subgroup of SL2(Z) having order 4,
while the second is fixed by one of order 6.

In Chapter 4, we will see that understanding certain moduli stacks involving
orbifold Riemann surfaces is central to Chen–Ruan cohomology.

Example 1.18 Suppose that (Z,ω) is a symplectic manifold admitting a
Hamiltonian action of the torus T

k . This means that the torus is acting ef-
fectively by symplectomorphisms, and that there is a moment map µ : Z → t∗,
where t∗ ∼= R

k is the dual of the Lie algebra t of T
k . Any v ∈ t generates a

one-parameter subgroup. Differentiating the action of this one-parameter sub-
group, one obtains a vector field Xv on Z. The moment map is then related to
the action by requiring the equation

ω(Xv,X) = dµ(X)(v)

to hold for each X ∈ T Z.
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1.2 Examples 9

One would like to study Z/T
k as a symplectic space, but of course even if

the quotient space is smooth, it will often fail to be symplectic: for instance,
it could have odd dimension. To remedy this, take a regular value c ∈ R

k of
µ. Then µ−1(c) is a smooth submanifold of Z, and one can show that T

k

acts on it. The quotient µ−1(c)/T
k will always have a symplectic structure,

although it is usually only an orbifold and not a manifold. This orbifold is
called the symplectic reduction or symplectic quotient of Z, and is denoted
by Z//T

k .
The symplectic quotient depends on the choice of the regular value c. If we

vary c, there is a chamber structure for Z//T
k in the following sense. Namely,

we can divide R
k into subsets called chambers so that inside each chamber,

Z//T
k remains the same. When we cross a wall separating two chambers,

Z//T
k will undergo a surgery operation similar to a flip in algebraic geometry.

The relation between the topology of Z and that of Z//T
k and the relation

between symplectic quotients in different chambers have long been interesting
problems in symplectic geometry – see [62] for more information.

The construction of the symplectic quotient has an analog in algebraic ge-
ometry called the geometric invariant theory (GIT) quotient. Instead of T

k , one
has the complex torus (C∗)k . The existence of an action by (C∗)k is equivalent
to the condition that the induced action of T

k be Hamiltonian. The choice of
c corresponds to the choice of an ample line bundle L such that the action of
(C∗)k lifts to the total space of L. Taking the level set µ−1(c) corresponds to
the choice of semi-stable orbits.

Example 1.19 The above construction can be used to construct explicit exam-
ples. A convenient class of examples are toric varieties, where Z = C

r . The
combinatorial datum used to define a Hamiltonian toric action is called a fan.
Most explicit examples arising in algebraic geometry are complete intersections
of toric varieties.

Example 1.20 Let G denote a Lie group with only finitely many compo-
nents. Then G has a maximal compact subgroup K , unique up to conju-
gacy, and the homogeneous space X = G/K is diffeomorphic to R

d , where
d = dim G − dim K . Now let � ⊂ G denote a discrete subgroup. � has a natu-
ral left action on this homogeneous space; moreover, it is easy to check that this
is a proper action, due to the compactness of K . Consequently, all the stabilizers
�x ⊆ � are finite, and each x ∈ X has a neighborhood U such that γU ∩ U = ∅
for γ ∈ � \ �x . Clearly, this defines an orbifold structure on the quotient space
X/�. We will call this type of example an arithmetic orbifold; they are of funda-
mental interest in many areas of mathematics, including topology and number
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10 Foundations

theory. Perhaps the favorite example is the orbifold associated to SLn(Z), where
the associated symmetric space on which it acts is SLn(R)/SOn

∼= R
d , with

d = 1
2n(n − 1).

1.3 Comparing orbifolds to manifolds

One of the reasons for the interest in orbifolds is that they have geometric
properties akin to those of manifolds. A central topic in orbifold theory has
been to elucidate the appropriate adaptations of results from manifold theory
to situations involving finite group quotient singularities.

Given an orbifold X = (X,U) let us first consider how the charts are glued
together to yield the space X. Given (Ũ ,G, φ) and (Ṽ , H,ψ) with x ∈ U ∩ V ,
there is by definition a third chart (W̃ ,K,µ) and embeddings λ1, λ2 from this
chart into the other two. Here W is an open set with x ∈ W ⊂ U ∩ V . These
embeddings give rise to diffeomorphisms λ−1

1 : λ1(W̃ ) → W̃ and λ2 : W̃ →
λ2(W̃ ), which can be composed to provide an equivariant diffeomorphism
λ2λ

−1
1 : λ1(W̃ ) → λ2(W̃ ) between an open set in Ũ and an open set in Ṽ .

The word “equivariant” needs some explanation: we are using the fact that an
embedding is an equivariant map with respect to its associated injective group
homomorphism, and that the local group K associated to W̃ is isomorphic to
the local groups associated to its images. Hence we can regard λ2λ

−1
1 as an

equivariant diffeomorphism of K-spaces. We can then proceed to glue Ũ/G

and Ṽ /H according to the induced homeomorphism of subsets, i.e., identify
φ(ũ) ∼ ψ(ṽ) if λ2λ

−1
1 (ũ) = ṽ. Now let

Y =
⊔
Ũ∈U

(Ũ/G)/ ∼

be the space obtained by performing these identifications on the orbifold atlas.
The maps φ : Ũ → X induce a homeomorphism � : Y → X.

This procedure is, of course, an analog of what takes place for manifolds,
except that our gluing maps are slightly more subtle. It is worth noting that we
can think of λ2λ

−1
1 as a transition function. Given another λ′

1 and λ′
2, we have

seen that there must exist unique g ∈ G and h ∈ H such that λ′
1 = gλ1 and

λ′
2 = hλ2. Hence the resulting transition function is hλ2λ

−1
1 g−1. This can be

restated as follows: there is a transitive G × H action on the set of all of these
transition functions.

We now use this explicit approach to construct a tangent bundle for an
orbifold X . Given a chart (Ũ ,G, φ), we can consider the tangent bundle T Ũ ;
note that by assumption G acts smoothly on Ũ , hence it will also act smoothly
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