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APERIODIC ORDER

Volume 2: Crystallography and Almost Periodicity

Quasicrystals are non-periodic solids that were discovered in 1982 by Dan

Shechtman, Nobel Laureate in Chemistry 2011. The mathematics that underlies this

discovery or was stimulated by it, which is known as the theory of Aperiodic Order,

is the subject of this comprehensive multi-volume series.

This second volume begins to develop the theory in more depth. A collection of

leading experts in the field, among them Robert V. Moody, introduce and review

important aspects of this rapidly-expanding field.

The volume covers various aspects of crystallography, generalising appropriately

from the classical case to the setting of aperiodically ordered structures. A strong

focus is placed upon almost periodicity, a central concept of crystallography that

captures the coherent repetition of local motifs or patterns, and its close links to

Fourier analysis, which is one of the main tools available to characterise such

structures. The book opens with a foreword by Jeffrey C. Lagarias on the wider

mathematical perspective and closes with an epilogue on the emergence of

quasicrystals from the point of view of physical sciences, written by Peter Kramer,

one of the founders of the field on the side of theoretical and mathematical physics.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in

mathematics or mathematical science and for which a detailed development of the

abstract theory is less important than a thorough and concrete exploration of the

implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their

subjects comprehensively. Less important results may be summarised as exercises

at the ends of chapters. For technicalities, readers can be referred to the

bibliography, which is expected to be comprehensive. As a result, volumes are

encyclopaedic references or manageable guides to major subjects.
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Germany

Daniel Lenz

Institut für Mathematik

Universität Jena, Germany

Nicolae Strungaru

Dept. of Mathematics and Statistics

MacEwan University

Edmonton, Canada

Dirk Frettlöh
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Foreword by Jeffrey C. Lagarias

The mathematical study of aperiodically ordered structures is a beau-

tiful synthesis of geometry, analysis, algebra and number theory. On the

mathematical side, it arose in connection with tilings as a model of com-

putation (the undecidability of the domino problem of Hao Wang) and the

existence of ever simpler aperiodic tilings, exemplified by the Penrose tiling.

From the physics side, it received great impetus from the discovery of Dan

Schechtman in 1982 (published in 1984, Nobel Prize in Chemistry 2011) of

an AlMn alloy whose X-ray diffraction spectrum exhibited long-range order

of atomic positions and spacings with icosahedral symmetry.1 That is, the

sample exhibited an X-ray diffraction pattern with sharp spots with 10-fold,

6-fold and 2-fold symmetries when rotated to the corresponding directions of

the icosahedron. Such a symmetry is incompatible with the material having

an atomic structure that is periodic in any direction.

This discovery raised several questions, such as:

(1) Do ideal structures exist that have diffraction spectra with sharp

spots and (perfect) non-crystallographic symmetries?

(2) Are there ‘local conditions’ permitting or favouring the assembly of

such structures?

These two questions received positive answers in the 1980s, in the sense

of mathematical constructions which achieve all or most of them. One such

construction leads to cut and project sets and so-called model sets, which are

described in detail in the first volume of this series [AO1]. There was earlier

theoretical work anticipating these structures by various people, including

Mackay (1981), Kramer (1982) as well as Kramer and Neri (1984).

There remain serious mathematical problems in extending these answers

to a larger range of validity, including:

(i) Construction of interesting point sets;

(ii) Determination of local (matching) rules to force aperiodicity;

(iii) Classification of the possible types of symmetry.

1The corresponding references can be found in the bibliography of the first volume in

this series [AO1]. Selected additional or new references will be given explicitly.
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xii FOREWORD BY JEFFREY C. LAGARIAS

Answering these questions motivated the development of an extension of

classical crystallography that is suitable to describe such structures, nowadays

known as quasicrystals. In addition, establishing new notions of ‘equivalence’

of (aperiodic) structures requires new concepts. For instance, this task led to

developments in ergodic theory with larger group actions, such as Zd, Rd, or

the Euclidean isometry group Rd � O(d).

Besides the two questions above, there is a third question, concerning

the inverse problem of reconstructing information on the atomic structure

from diffraction data or from scanning tunneling electron microscope data.

This amounts to asking: ‘Where are the atoms?’, which still seems a difficult

problem to handle.

There are two major types of structures studied in aperiodic order. The

first type consists of Delone set models, which concern uniformly discrete

sets of points modelling the solid state, often imposing restrictions on allow-

able interpoint distance vectors. The second type consists of tiling models,

where one studies tilings of Euclidean space with a finite number of distinct

tile shapes, often polyhedra. In some of these models, additional ‘matching

rules’ are imposed on how tiles may be placed next to each other. There are

methods for taking a model structure of one type and converting it to the

other type. For Delone sets, one may associate to it the tiling of space given

by the Voronoi cells around its points. For a tiling model, one may mark a

few points in the interior of each tile to assign a Delone set to the tiling.

Generalisation of geometric crystallography

The subject of geometric crystallography [5] was developed in the 19th

century. Based on atomistic concepts, it considered infinitely extended dis-

crete sets of points Λ in space Rd, called regular point systems, which are

discrete sets that ‘look the same’ when centred at any point in them. That

is, the set Λ is preserved by any translation mapping one point of it to any

other. A foundational result is that any such system of points must form

a single (full-dimensional) lattice Γ of points in Rd. One may then classify

such systems according to their full set of Euclidean symmetries (allowing

reflections). This was accomplished for two dimensions in the 1870s and in

three dimensions in independent work of Federov (1891), Schoenflies (1893)

and Barlow (1893).

The problem of establishing a finite classification in d dimensions was

raised by Hilbert in 1900 as part of his 18th problem. The first step to its

solution was contributed by Bieberbach, who by 1912 showed that there are

only finitely many symmetry types in each dimension. The classification in

four dimensions was completed in 1978 by Brown, Bülow, Neubüser, Won-

dratschek and Zassenhaus.
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FOREWORD BY JEFFREY C. LAGARIAS xiii

A generalisation of regular point systems is that of multiregular point

systems. These are infinitely extended discrete sets in Rd which, when centred

at any point, are isometric to one of a finite list of such systems (fixing

a marked centre point). Dolbilin et al. [3] showed that any such system

necessarily is the union of a finite number of translates of a full-dimensional

lattice Γ , so is fully periodic (or crystallographic).

To allow aperiodic point patterns, one enlarges the set of crystallographic

point sets to Delone sets, or (r, R) sets, which are infinitely extended sets such

that no two points are closer than distance r and such that each ball of radius

R contains at least one point. There is a useful taxonomy on Delone sets that

nicely extends the framework of geometric crystallography.

The first idea is to generalise the notion of regular point system to re-

quire the agreement of patches of a finite radius, rather than all the way to

infinity. For a fixed set Λ, a patch of radius T centred at x ∈ Λ is the set

Λ ∩ (B
T
(0) + x). In 1976, Delone and coworkers showed that regular point

systems could be characterised by the property that they locally ‘look the

same’ when centred around each point out to a sufficiently large finite radius

T , where T is a function only of the Delone set parameters (r, R) and the

dimension d. An extension of this result holds for multiregular point systems

as well: If Λ ⊂ Rd is a Delone set that has exactly k different isometry classes

of centred patches of a given radius T , with T sufficiently large with respect

to k, namely T � CRk with C = 2(d2 +1) log2(2(R/r)+2), then Λ is a mul-

tiregular point system having k different isometry classes of (infinite radius)

patch types [3].

The second idea is to restrict the allowable interpoint distance vectors.

The class of finite local complexity (FLC) Delone sets comprises those Delone

sets Λ for which Λ−Λ is a discrete and closed set. In fact, it suffices to check

this condition out to a finite radius 2R: One only needs that (Λ−Λ)∩B2R
(0)

is a finite set. One consequence is that the points of FLC Delone sets can be

labelled by ‘coordinates’ in a finite-dimensional module, embedded in a space

of dimension higher than that of the ambient space of the Delone set.

To go one step further, one considers Meyer sets in Rd, which form the

subclass of Delone sets Λ for which the interpoint distance set (or Minkowski

difference) Λ−Λ is a Delone set. This version has been shown to be equivalent

to Meyer’s original notion [11], which is that of relatively dense sets Λ such

that Λ −Λ ⊆ Λ + F with F a finite set.

A quantification of order for FLC Delone sets is provided by numerical

combinatorial invariants of the structure of their finite patches. The patch-

counting function f(R) counts the number of translation-inequivalent patches

of radius R. The growth rate of this function with increasing R is a combina-

torial measure of the possible kind of order. It has been shown by Lagarias
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xiv FOREWORD BY JEFFREY C. LAGARIAS

and Pleasants (2002) that, if this growth rate is sublinear, the function must

be eventually constant and the structure must then be an ideal crystal. A

second quantifier concerns measures of distances for the repetition of different

patches of large radius in the set. One says that an FLC Delone set Λ is lin-

early repetitive if there is a constant C such that every fixed patch of radius

ρ that occurs somewhere in the set necessarily occurs within distance Cρ of

any point of Λ. This condition holds for Penrose tilings, for example, and it

also implies that such a set must have a well-defined diffraction measure.

Inflation rules

A frequently used construction for aperiodic patterns employs structures

that are (possibly approximately) preserved under an inflation operation.

Meyer’s work in harmonic analysis from the early 1970s included a study of

discrete systems which may, in special cases, be preserved under an inflation

rule, which reproduces a structure on a larger scale. He noted a connection

between allowable inflation scales on these structures and algebraic numbers.

A point set Λ has an inflation if there is a number η > 1 such that

ηΛ ⊂ Λ; we call any such η an inflation factor for Λ. Meyer [12] proved for

the sets which are now called Meyer sets that the inflation factor must be an

algebraic integer which is either a Pisot–Vijayaraghavan (PV) number (all

algebraic conjugates satisfy |η �| < 1) or a Salem number (all |η �| � 1 and

some |η �| = 1). The golden ratio τ = 1+
:

5

2
is a PV number. It features

in the mathematics of the icosahedron and appears in all tiling models with

icosahedral symmetry as well as in fivefold symmetric tilings of the plane.

Later, in 1999, I observed that there is also an algebraic restriction on inflation

factors η > 1 of FLC Delone sets: They must be real algebraic integers all of

whose algebraic conjugates η � satisfy |η �| � η.

Packing problems and quasicrystallinity

Packing problems have been observed to possess connections with crys-

tallography. The general packing problem includes the determination of the

densest packings attainable by identical copies of fixed solid geometric ob-

jects, particularly convex bodies. Minkowski’s ‘Geometry of Numbers’ con-

cerns the problem of finding the densest lattice packing of identical copies of

a given convex body, movable by translations only. Allowing rotations of the

body, as in the case of tetrahedra, leads to new problems.

Notable examples have densest packings attainable by a crystalline struc-

ture. For equal spheres, the densest packing in dimensions up to three are

all attained by lattice packings. In three dimensions, there are also equally
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dense periodic packings of various types, as well as packings that are aperi-

odically stacked in one direction while being periodic in the two independent

directions orthogonal to it.

Recent developments suggest that suitable tiling questions may also lead

to quasicrystalline structures. For packings of regular tetrahedra, there are

no mathematical proofs but there are results obtained by simulation. The

densest known packing of regular tetrahedra has a periodic structure with

four tetrahedra in the unit cell [2]. On the other hand, Monte Carlo sim-

ulations of Haj-Akbari and coworkers [6] of a ‘gas’ of regular tetrahedra at

high pressure (meaning ensembles having density close to this maximal value)

suggest they have a quasicrystalline structure in two directions, while having

a periodic structure in the third direction. Specifically, samples displayed a

diffraction pattern (for point scatterers located at centroids of the tetrahedra)

that exhibits a ring of peaks indicating a 12-fold symmetry.

Diffractivity

The study of diffractivity properties of aperiodic sets requires Fourier

analysis and distribution theory. Here, we only consider diffraction for point

sets in Rd, although Meyer — and later Moody as well as Schlottmann — have

shown that the analysis of diffraction can profitably be done in the more gen-

eral setting of locally compact Abelian groups. The formulation of a general

mathematical notion of diffractivity suitable for diffraction of aperiodic sets

(via a connection with ergodic theory) was initiated by Dworkin (1993) and

extended by Hof (1995). It uses a framework of locally finite measures, which

for Rd can be viewed as a subclass of tempered distributions. An autocorre-

lation measure is associated to a given spatial distribution of δ-functions as a

locally finite measure; see [AO1, Chs. 8 and 9] for a detailed exposition. The

diffraction data is the Fourier transform of this measure, viewed as a positive

definite measure. A set will be called pure point diffractive if this Fourier

transform is itself a pure point measure, where the spectrum may be a dense

set of points.

A special case of this notion of diffractivity is given by the Poisson sum-

mation formula (PSF). Given a lattice Γ ⊂ Rd, consider the locally finite

measure (Dirac comb) δ
Γ

:=
�

x*Γ
δx, where δx is the normalised Dirac

measure at x. In this case, the autocorrelation measure of δ
Γ

is a scaled

multiple of δ
Γ
. Its Fourier transform2 is a (different) scaled multiple of δ

Γ ∗ ,

where Γ 7 is the dual lattice of Γ A generalisation of this formula shows that

2The PSF is more commonly written as the evaluation of a function against this

tempered distribution δ
Γ

, in which one side of the formula is the sum
P

x∈Γ
f(x) and the

other side is a weighted sum of the Fourier transform of f evaluated on the dual lattice.
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an ideal crystal is pure point diffractive, with its spectrum supported on a

Delone set, the dual lattice Γ 7.

The cut and project construction leads to many Meyer sets with pure

point diffraction spectrum. In particular, regular model sets have this prop-

erty. A formula for the diffraction of cut and project sets was independently

found by many people, including Elser (1986). A mathematically rigorous

approach was developed later, starting with work by de Bruijn (1986), Hof

(1995) and Schlottmann (2000). The Delone set condition on the initial set

can be relaxed, as demonstrated for the visible lattice points in Rd by Baake,

Moody and Pleasants (2000). This set is pure point diffractive, but not rel-

atively dense.

My survey [7] from 2000 discussed results on diffractivity and their rela-

tion to classes of almost periodic functions. That paper formulated questions

concerning the existence of pure point measures supported on Delone sets

having pure point diffraction measures with uniformly discrete or Delone set

support. This research area is active and has had substantial recent advances.

In 2015, Lev and Olevskii [9] showed that, in the one-dimensional case, all

such measures come from the Poisson summation formula. For higher dimen-

sions, there are many exotic examples, found by Favorov, Lev and Olevskii,

Meyer, and Kolountzakis; see [13] and references therein. Further advances

in both directions are made in [10].

The diffraction spectrum of various aperiodic sets which possess an in-

flation factor has been much studied. Some of these sets have pure point

spectrum, in other cases they have mixed spectrum. It is an open prob-

lem whether such inflation sets, when their autocorrelation is a pure point

measure, must necessarily have an inflation factor that is a PV number. In

another direction, the diffraction spectrum of a Delone set can be related to

to the dynamical spectrum of an associated dynamical system with a trans-

lation action by Rd (or, in the lattice-periodic setting, by Zd); see [1] for a

survey.

A famous inverse problem for X-ray diffraction is that of reconstructing

the atomic structure of a periodic crystal from X-ray diffraction data. This

problem requires overcoming the difficulty that diffraction data determine

the intensities of spots but lose the phase information.3 Consequently, the

diffraction image cannot tell certain periodic structures apart. Such struc-

tures are called homometric and were studied by Pauling and Patterson in

the 1930/40s. A Nobel Prize in Chemistry was awarded in 1985 to Haupt-

mann and Karle ‘for outstanding achievements in the development of direct

3In terms of Fourier transforms, the scattering intensities record the squared absolute

values of the Fourier amplitudes (or coefficients).
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methods in the determination of crystal structure’ to recover phase informa-

tion. It is an open problem to determine suitable ‘phase information’ that

might be associated with a diffractive aperiodic set; see [8] for first steps

towards a classification. In this context, it is also important to investigate

how modulated structures can be distinguished. These questions suggest the

investigation of new classes of almost periodic functions.

Connections with number theory

There is an unreasonably effective connection of quasicrystalline struc-

tures with algebraic number theory, which already appears in the title of

Meyer’s 1972 book [11] in which he introduced the notion of what one now

calls model sets (simply called ‘model’ there).

Classical problems in number theory produce crystalline structures with

extra symmetries given by Galois group actions. Consider the ring of integers

OK of an algebraic number field K for which K is a Galois extension of the

rational numbers Q with (finite) Galois group G. Such a ring of integers

possesses a Minkowski embedding, compare [AO1, Sec. 3.4], as a lattice in a

suitable Euclidean space Rd (of dimension d = [K : Q]), in such a way that

the symmetries of the Galois group G act linearly on the coordinates of this

Euclidean space, and leave the lattice OK invariant. For example, take G

to be the alternating group A5 of order 60, which is the rotation symmetry

group of the regular icosahedron and the smallest non-Abelian simple group.

One can find an irreducible equation of degree 5 over Q whose splitting field

(normal Galois closure) has group A5. The ring of integers of the normal

closure of this field then carries an action of A5, and the restriction to a

suitable sublattice can give an (inefficient) cut and project construction.

This lattice embedding of algebraic integers was used by Minkowski in

his ‘Geometry of Numbers’. His study of lattice packings of convex bodies

was invented, in part, to prove results in number theory related to bounds

for discriminants of number fields and finiteness of class numbers of algebraic

number fields.

The Poisson summation formula plays an important role in number the-

ory, connecting it to harmonic analysis. The functional equation of the Rie-

mann zeta function encodes the PSF in one dimension, and vice versa. The

property of pure point diffractivity for certain lattice Dirac combs is another

instantiation of the PSF. The existence of quasicrystals which appear to have

pure point diffraction spectrum hints at the existence of new kinds of sum-

mation formulas generalising the PSF, a problem raised by Dyson [4], who

asked whether it might shed light on the Riemann hypothesis. The ‘explicit

formulas’ of prime number theory have a form resembling the PSF, preserving

discreteness of point sets but not preserving the Delone set property.
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Many of the topics above have been introduced and discussed in [AO1].

The present volume presents chapters surveying and extending several of

these topics. The first chapter studies inflation tilings, and the second chapter

considers the problem of reconstructing the parameters of model sets from to-

mographic data. The subsequent chapter considers enumeration problems for

embedded sublattices which are related to crystallographic questions. Three

further chapters present a detailed account of the structure of almost peri-

odic measures, in a form useful for advancing the study of diffractivity of

aperiodic structures. The volume concludes with an epilogue on the physical

precursors to the discovery of quasicrystals.
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Preface

This is the second volume in a series of books exploring the mathematics

of aperiodic order. While the first volume was meant as a general introduction

to the field, we now start to develop the theory in more depth. To do justice

to the rapidly expanding field, we decided to work with various authors or

teams of authors, which means that this book is somewhere intermediate

between a monograph and a review selection. Future volumes will also be

structured in this way.

Clearly, almost periodicity is a central concept of crystallography, as it

reflects and captures the coherent repetition of local motifs or patterns. The

foremost tool to analyse such structures is provided by Fourier analysis of

measures, which thus forms a substantial part of this volume. Other im-

portant aspects are usually analysed by group theoretic or general algebraic

methods. In this respect, due to the availability of comprehensive reviews

and several books, we decided to not include a chapter on space groups and

their generalisation to quasicrystals.

The main text begins with a chapter on inflation tilings, contributed by

Dirk Frettlöh. It augments the discussion of the first volume by presenting

a panorama of less familiar constructions and recent developments. This is

followed by a contribution to the inverse problem of discrete tomography,

where special emphasis lies on the comparison between notions from classical

(periodic) crystallography and their extensions to quasicrystals. A similar

interplay is prevalent in the ensuing chapter on enumeration problems for

lattices versus embedded Z-modules, which highlights the power of number-

theoretic methods in the theory of aperiodic order.

The substantial part on almost periodicity and its facets begins with a

thorough exposition of the general theory of almost periodic measures on lo-

cally compact Abelian groups, contributed by Robert V. Moody and Nicolae

Strungaru. This comprehensive summary emerged from the need to under-

stand the spectral structure of aperiodic systems. Perhaps the most impor-

tant connection exists with the structure of Meyer sets and their description

via cut and project schemes, which is developed in the ensuing chapter by

Nicolae Strungaru. This part is concluded by an expository discussion of
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xx PREFACE

the sampling problem for (almost) periodic functions along exponential se-

quences, which highlights yet another connection with number theory.

Complementing the foreword by Jeffrey C. Lagarias, this volume ends

with an epilogue on the emergence of quasicrystals from the perspective of

physical sciences, with a focus on the underlying theoretical ideas. This

epilogue was contributed by Peter Kramer who is one of the pioneers and

founders of the field on the side of theoretical and mathematical physics.

As mentioned above, this volume consists of solicited reviews and the-

matic additions. All chapters have been edited or partly redrafted by us to

match the style of the series and its general notation as far as possible. We

have thus made the first volume in the aperiodic order series the main refer-

ence for all chapters, and refer to it frequently. Nevertheless, some deviation

and/or additions are inevitable as a consequence of the established conven-

tions in different mathematical disciplines. Some other, more minor changes

have also occurred, such as distinguishing between inclusion and proper inclu-

sion of sets. Where appropriate, such modifications are detailed in footnotes.

Each chapter has its own bibliography, while the general index covers all

chapters and is also meant to reflect connections between the expositions.

Let us give some background on the tiling that is shown on the book cover.

It was designed by Franz Gähler, and is locally equivalent (in the sense of

mutual local derivability) to his shield tiling. It was originally designed for a

competition at the Fields Institute for Research in Mathematical Sciences in

Toronto in 1995. In this year, the Fields Institute moved from Waterloo to

Toronto, where a fundraising tiling on the wall in the backyard was planned.

Gähler’s submission won the competition, but, for a number of reasons, the

tiling wall was never realised.

Various people have favourably contributed to this volume. First of all,

we would like to thank all authors for the effort they have put into the indi-

vidual chapters, and into critically reading and commenting on other parts of

the volume. Furthermore, we are indebted to Franz Gähler, Neil Mañibo, Ya-

sushi Nagai, Dan Rust, Timo Spindeler, Venta Terauds and Christopher Voll

for their comments and suggestions, which helped to improve the exposition.

Special thanks also to Franz Gähler for providing the cover illustration. Last

but not least, we thank the staff from Cambridge University Press for an al-

ways smooth cooperation, the German Research Council (DFG) for support

through CRC 701, and the School of Physical Sciences at the University of

Tasmania in Hobart for its hospitality during several visits, which helped us

immensely to complete this volume.

Michael Baake and Uwe Grimm
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