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CHAPTER 1

More Inflation Tilings

Dirk Frettlöh

Inflation tilings exhibit a wealth of properties, as we shall demonstrate

by means of explicit examples. In this sense, this chapter can be seen as

an extension of [AO1, Ch. 6]. Along the journey, the concept of inflation

will be generalised in several ways. One of the aims of our exposition is to

highlight some of the more exotic behaviour that can be observed in the realm

of inflation tilings and to point out some interesting questions raised by these

examples. Most of the examples discussed below are contained in the Tilings

Encyclopedia [21].

1.1. A simple inflation tiling without FLC

Many if not most examples of aperiodic tilings in the literature have

finite local complexity (FLC); see [11] or [AO1, Sec. 5.3] for background.

Even though these examples may be easier to construct, there is no reason to

assume that FLC is a typical property of inflation tilings. One of the simplest

inflation tilings that fails to have FLC is generated by the following rule [33]:

(1.1.1) 1

1

a

The inflation factor (or multiplier) for this rule is 3, and the single prototile is

a unit square. Under the inflation, each square is replaced by three columns

of three squares each, where the third column is shifted vertically by some

irrational number a /* Q. The resulting tilings contain pairs of squares sharing

an entire edge, as well as pairs of squares sharing part of an edge, where

vertical shifts of the form na mod 1 between adjacent squares are realised

with infinitely many different n * N. In particular, the integer n takes the
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2 1. MORE INFLATION TILINGS

Figure 1.1.1. A patch of a simple non-FLC tiling, as defined by

Eq. (1.1.1). For clarity, the square tiles are alternatingly coloured black

and white.

values 1, 3+1, 32+3+1 etc. Since a is irrational, the corresponding values of

na mod 1 are all different. Consequently, there are infinitely many pairwise

non-congruent clusters (or patches) of two adjacent tiles. This shows that

the tilings obtained from this inflation rule do not have the FLC property.

A patch of such a tiling is shown in Figure 1.1.1.

If one does not insist that the tiles are polygons, one can turn the inflation

rule (1.1.1) into a stone inflation [AO1, p. 148]. Parts of the boundary of the

prototile will then be turned into fractals. The corresponding stone inflation

is given by

and is clearly mutually locally derivable (MLD) with the inflation (1.1.1); see

[AO1, Sec. 5.2] for background on MLD as an equivalence relation.

The boundary of the prototile is not a ‘proper’ fractal, in the sense that

its Hausdorff dimension is 1. This can be seen by employing the methods

described in [47]. Denote the upper part of the boundary of the prototile by
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1.1. A SIMPLE INFLATION TILING WITHOUT FLC 3

F . The stone inflation induces a substitution Ã for F , namely

a

a

a

a
b b b

b

a a

where b denotes a horizontal line segment of unit length and a denotes a

vertical line segment of length a. The matrix of this induced substitution

is M =
�

3 2
0 3

�

. The contraction factor of the iterated function system (IFS,

compare [AO1, Sec. 7.1]) for F is c = 1
3 , the Perron–Frobenius (PF) eigen-

value of M is 3. Loosely speaking, the ‘growth rate’ of the iterates of the

IFS is 3 · 1
3 = 1. In order to get a set with dimension strictly larger than 1,

the growth rate needs to be > 1. For instance, the growth rate of the Koch

curve is 4
3 , which results in its Hausdorff dimension being log(4)

log(3) .

More precisely, the curve F is only a subset of the solution S of the IFS

corresponding to Ã, because the IFS has overlaps, and these overlaps yield

additional parts of S that are not part of the boundary of the prototile of

the tiling. Nevertheless, F is a subset of S, hence its dimension is equal to or

less than the dimension of S. Because F has at least dimension 1, it suffices

to show that the Hausdorff dimension of S is 1, too. By [47, Prop. 6.106],

the affinity dimension of S is

dimaff(S) =
log(Ã(M))

log(c−1)
=

log(3)

log(3)
= 1.

Here, Ã(M) denotes the spectral radius of M . Due to [47, Prop. 4.122], the

Hausdorff dimension of S is bounded by the affinity dimension, hence it also

equals 1. Consequently, the boundary curve F of the prototile has Hausdorff

dimension 1 as well.

There are more sophisticated but essentially similar constructions of non-

FLC inflation tilings by Danzer [6, 7] as well as by Frank and Robinson [14];

see also [AO1, Ex. 5.8] as well as [12]. All of these have in common that they

contain infinitely many non-congruent pairs of tiles along a ‘fault line’ in the

tiling. Informally, a fault line is an infinite line that separates a tiling into two

halves, such that sliding the half tilings along the fault line produces tilings

that still belong to the same hull. More precisely, in any given inflation tiling

with an infinite fault line, there occur (countably) infinitely many distinct

ways that two tiles are shifted against each other along the fault line. These

shifts form a set that will have limit points. The tiling orbit closure in the

local topology will then also contain tilings with shifts that correspond to

these limit points, which might possibly be arbitrary real numbers.
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4 1. MORE INFLATION TILINGS

Fault lines are a typical phenomenon of non-FLC tilings. In fact, it is

shown in [14] (in the proof of Thm. 4.4) that primitive stone inflations either

produce FLC tilings or tilings with a fault line. Some non-trivial sufficient

conditions for inflation tilings to have FLC are given in [16] and [14].

1.2. One-parameter families of inflation rules

Usually, inflation rules are rigid in the sense that one cannot continu-

ously deform the tiles without destroying the inflation property. Here, we

discuss a different example of an inflation rule due to Danzer. It contains

one continuous parameter which determines the shapes of the tiles. It can be

found in the extended version of a paper by Goodman-Strauss [28], which is

available from his website.1

We consider the following inflation rule for three triangular prototiles

(1.2.1)
1

»

¿ »¿

»2
» 1

»2¿
»¿

1

where ¿ is a free parameter. Figure 1.2.1 shows a patch of a tiling arising from

this inflation rule. The inflation factor » j 1.3247 is the largest root of the

polynomial x32x21. It is the smallest Pisot–Vijayaraghavan (PV) number,

sometimes called the ‘plastic’ number; compare [AO1, Ex. 2.17]. The value of

¿ can be chosen arbitrarily from the open interval (»21, »+1). Equivalently,

the interior angle in the lower left vertex of the small triangle (leftmost in

the inflation rule (1.2.1)) can be chosen arbitrarily from the interval (0, Ã).

In particular, we can produce tilings with arbitrarily ‘thin’ tiles in this way.

The inflation rules for two further choices of ¿ are shown below. On the left,

a realisation with three right-angled triangles is shown, while on the right the

inflation uses three obtuse triangles.

Continuously decreasing or increasing the value of ¿ corresponds to moving

the upper vertex of the first two prototiles along the half-circles indicated by

dashed arcs. The upper vertex of the third prototile then moves on a different

conic section. We leave it to the reader to work out the details of the latter

(which is an ellipse).

1 http://comp.uark.edu/~strauss/
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1.3. A TILING WITH NON-UNIQUE DECOMPOSITION 5

Figure 1.2.1. A patch of an inflation tiling generated by the inflation rule

(1.2.1). Here, µ =
√

λ2 + 1, wherefore two of the triangles are right-angled.

1.3. A tiling with non-unique decomposition

A close relative of the table tiling (see [43] or [AO1, Ex. 6.2] for the latter)

is the tiling defined by the inflation rule

If one ignores the triangular marks in the diagram, the inflated tile has less

symmetry than the prototile. Hence, without the triangular marks, the dia-

gram does not define an inflation uniquely. As a consequence, the tiling with

unmarked tiles violates local recognisability and thus does not possess a local

inflation deflation symmetry (LIDS) in the sense of [AO1, Def. 5.16]. This is

indicated in the right-hand part of Figure 1.3.1.

The tiling with triangular marks does have an LIDS, as it ought to have,

according to the following result by Solomyak.

Theorem 1.3.1 ([51, Thm. 1.1]). A self-affine tiling that has FLC with

respect to translations has the unique composition property if and only if it is

non-periodic. �

In our terminology, a self-affine tiling is an FLC tiling originating from

a primitive stone inflation, and the unique composition property refers to
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6 1. MORE INFLATION TILINGS

Figure 1.3.1. If one ignores the triangular marks in this aperiodic tiling,

it has more than one possible preimage under the inflation rule. Two

preimages are indicated in the right part of the figure, supertiles of one

possibility with grey lines, supertiles of the other with dashed lines.

the LIDS. More precisely, the unique composition property in [51] does not

require the supertiles to be determined locally. For the example at hand, this

makes no difference. The tilings (marked as well as unmarked) are easily seen

to be non-periodic (and hence aperiodic), either by applying Theorem 1.3.1

or by superimposing a hierarchical pattern of squares as in [AO1, Ex. 5.11];

see also [AO1, Fig. 6.50]. This example was discussed by Goodman-Strauss

in [27]; see also the extended version of [28] mentioned previously.

1.4. Überpinwheel

The classical pinwheel tiling (see [AO1, Sec. 6.6] and references therein) is

an inflation tiling that fails to have FLC with respect to translations, though

it has FLC with respect to rigid motions. The tiles in the pinwheel tiling are

all congruent (the prototile being a right-angled triangle with edge lengths 1, 2

and
:

5 ), but they appear in (countably) infinitely many different orientations

throughout the tiling. Hence, in order to specify the exact position of some

tile in the pinwheel tiling, one needs three parameters with an infinite set of

values rather than two; namely, two parameters for the position of its right-

angled vertex, say, and one parameter in the circle S1 for the orientation of

the tile. In the sequel, we will often identify the circle with the half-open

interval [0, 2Ã). The latter parameter describes the integer multiples of an

irrational rotation angle, so is of the form n³ mod 2Ã, where ³ = 2 arctan( 1
2 ).

Lorenzo Sadun [45] asked whether there are planar inflation tilings that

require two parameters to specify the orientation of the tiles, in the sense that
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1.4. ÜBERPINWHEEL 7

there are two rationally independent, irrational rotation angles in a tiling. We

are now going to discuss an example of such an ‘überpinwheel’ inflation tiling.

The pinwheel inflation rule is generalised as follows. Let T be a right-

angled triangle with edge lengths m, n,
:

m2 + n2 =: », where m, n * N

with m �= n. The classical pinwheel tiling corresponds to the case m = 1

and n = 2 (or m = 2 and n = 1). There is a canonical partition of »T into

congruent copies of T :

n m

In order to define an inflation rule for an aperiodic tiling with infinitely many

orientations, we need to flip at least one (but not all) of the rectangles, for

instance as in

n m

Choose an integer N such that N = »2 = m2 +n2 = k2 + �2 for k, �, m, n * N

with m �= n, k �= � and {m, n} �= {k, �}. Let us take the smallest choice,

which is N = 65 = 12 + 82 = 42 + 72. Let T1 be a right-angled triangle with

edge lengths 1, 8,
:

65 and let T2 be a right-angled triangle with edge lengths

4, 7,
:

65.

Consider the pinwheel-like inflation described above, applied to both tri-

angles T1 and T2, but in a ‘coupled’ way. In order to combine these two

inflations, replace a rectangular patch of size 7 × 8 in Ã(T1) by a 7 × 8 rect-

angular patch of copies of T2, and vice versa. One possible way to do so is

the following:

1
8 7

4
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8 1. MORE INFLATION TILINGS

The next result shows that each tile in the resulting tilings needs two param-

eters to specify its orientation.

Theorem 1.4.1. The angles arctan( 1
8 ) and arctan( 4

7 ) are both irrational,

and are independent over Q.

Proof. The irrationality of arctan(1
8 ) = π

2 2 arccos
�

1√
65

�

follows from the

fact that arccos
�

1√
n

�

/* ÃQ for n � 3 odd; see for instance [1, Thm. 3]. This

can be proved alternatively using cyclotomic fields. We will illustrate this

with arctan(4
7 ).

If arctan( 4
7 ) * ÃQ, then there is an n * N such that (7 + 4i)n * R, or

equivalently there is an n * N such that 7+4i
|7+4i| is a (complex) n-th root of

unity. Then, (7+4i)2

|7+4i|2 = 7+4i
7−4i is also a root of unity. Since 7+4i

7−4i * Q(i), and

the roots of unity in Q(i) are {1, i,21,2i} [AO1, Sec. 2.5.2], this yields a

contradiction. (More generally, all roots of unity in Q(e2π i/n) are of the form

±e2π i/n; see [55, Exc. 2.3] or [AO1, Sec. 2.5.2].)

The independence of arctan(1
8 ) and arctan(4

7 ) can again be shown by in-

terpreting them as complex numbers. If arctan(1
8 ) and arctan(4

7 ) were depen-

dent over Q, then there would exist k, m * Z \ {0} such that k arctan( 1
8 ) =

m arctan( 4
7 ). With z := 8+i

|8+i| and y := 7+4i
|7+4i| , this implies that zk = ym,

hence z2k = y2m, which gives

(8 + i)k

(8 2 i)k
=

(7 + 4i)m

(7 2 4i)m
and thus (8 + i)k(7 2 4i)m = (8 2 i)k(7 + 4i)m.

Because the ring Z[i] of Gaussian integers is a unique factorisation domain,

the prime factorisation is unique up to units in Z[i], hence

(2i)k(1+2i)k(3+2i)k(122i)m(3+2i)m = ik(122i)k(322i)k(1+2i)m(322i)m

and thus (1+2i)k−m(3+2i)k+m = (122i)k−m(322i)k+m. Since 1+2i, 122i,

3+2i and 32 2i are pairwise coprime in Z[i], this yields a contradiction. �

The fact that copies of both T1 and T2 occur in Ã(T1) as well as in Ã(T2)

implies the primitivity of Ã. Furthermore, the fact that Ã(T2) contains two

copies of T2 that are reflected in their shortest edge ensures that the tiles

in the corresponding tilings appear in infinitely many orientations. Indeed,

substituting these two tiles yields two copies of T2 that are rotated against

each other by 2 arctan(4
7 ),
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1.5. TILE ORIENTATIONS WITH DISTINCT FREQUENCIES 9

Consequently, higher level supertiles contain copies of T2 that are rotated

against each other by an angle of n · 2 arctan( 4
7 ) for all n * Z. Since we have

arctan( 4
7 ) /* ÃQ, these angles are distinct. In fact, whenever such a situation

occurs, the angles are even uniformly distributed in [0, 2Ã) by [19, Prop. 3.4

and Thm. 6.1]. This result is due to Radin [42] for the pinwheel tiling, while

the general case is treated in [19].

Theorem 1.4.2 ([19, Prop. 3.4 and Thm. 6.1]). Let Ã be a primitive inflation

rule in R2. Each tiling in the hull of Ã has statistical circular symmetry if

and only if there is a level-n supertile (for some n � 1) containing two copies

of the same prototile which are rotated against each other by some angle

³ /* ÃQ. �

Here, statistical circular symmetry means that the orientations of the

tiles are not only dense on the circle, but actually uniformly distributed.

Since there are countably infinitely many orientations of tiles in the pinwheel

tiling, the uniform distribution property refers to frequencies of tiles with an

orientation within certain intervals. Uniform distribution then means that,

for any two such intervals of the same length, the frequencies of tiles with

orientations in these intervals are equal; see [AO1, Sec. 7.1] for a more precise

definition.

Via similar constructions, one may obtain examples of tilings in which

the orientations of tiles are described by M > 2 irrational angles. This can

be done by mixing M pinwheel-like inflations with common inflation factor

» =
:

q, where q can be expressed as a sum of two distinct squares in M

different ways. Nevertheless, illustrating these examples will be inconvenient,

due to the inevitably large inflation factors. The next values are given by

325 = 12 + 182 = 62 + 172 = 102 + 152 for M = 3, by 1105 = 242 + 232 =

312 + 122 = 322 + 92 = 332 + 42 for M = 4, and by 5525 = 552 + 502 =

622 +412 = 702 +252 = 712 +222 = 732 +142 = 742 +72 for M = 6; compare

entry A052199 in the OEIS [49].

1.5. Tile orientations with distinct frequencies

The classical pinwheel tiling and its relatives discussed above have the

slightly surprising property that the tile orientations are uniformly distributed

on the circle. A related result holds for tilings that have FLC with respect

to translations.

Theorem 1.5.1 ([20, Thm. 2.3]). Let Ã be a primitive inflation rule such

that the tilings in the hull of Ã have FLC. If, for any two congruent tiles

S and T , the patch Ã(S) is congruent to the patch Ã(T ), the frequencies of

congruent tiles with different orientations are equal. �
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10 1. MORE INFLATION TILINGS

Figure 1.5.1. A level-3 inflation patch of the aperiodic ‘punch card’ tiling

(without markers), in which horizontal tiles are more frequent than vertical

ones. This requires different inflation rules for horizontal and vertical

rectangles, as specified in Eq. (1.5.1).

Note that, throughout [AO1] and thus far in this chapter, we have tacitly

taken the compatibility of inflation and rotation for granted. That is, we

have implicitly assumed the condition of Theorem 1.5.1 to be satisfied. For

instance, if the inflation rule of the Ammann–Beenker tiling is specified by

showing the inflation of a square T as Ã(T ), then we implicitly assumed that

T rotated by Ã/2 is substituted by the patch Ã(T ) rotated by Ã/2. However,

this need not be the case in general. In order to construct a tiling where,

say, horizontal rectangles are more frequent than vertical ones, one needs to

specify two different inflation rules for vertical and horizontal rectangles. The

following example defines such a rule,

(1.5.1)

We refer to the corresponding tilings as ‘punch card’ tilings. A patch is

shown in Figure 1.5.1. It obviously contains more horizontal rectangles than

vertical ones. More precisely, since the inflation matrix is Mσ =
�

7 6
2 3

�

with

PF eigenvalue 9 and corresponding right eigenvector (3
4 , 1

4 )T , there are three

times as many horizontal as vertical rectangles in any tiling of the hull.
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