
Introduction

Why yet another book on quantum mechanics? Quantum mechanics was born in the first
quarter of the twentieth century and has received an enormous number of theoretical and
experimental confirmations over the years. It is considered to be the fundamental physical
paradigm, and has a wide range of applications, from cosmology to chemistry, and from
biology to information sciences. It is one of the greatest intellectual achievements of the
past century. As an effect of its invention, the very concept of physical reality was changed,
and “observation,” “measurement,” “prediction,” and “state of the system” acquired a new
and deeper meaning.

Probability was not unknown in physics: it was introduced by Boltzmann in order to
control the behavior of a system with a very large number of particles. It was the missing
concept in order to understand the thermodynamics of macroscopic bodies, but the struc-
ture of the physical laws remained still deterministic. The introduction of probability was
needed as a consequence of our lack of knowledge of the initial conditions of the sys-
tem and of our inability to solve an enormous number of coupled non-linear differential
equations.

In quantum mechanics, the tune is different: if we have 106 radioactive atoms no intrinsic
unknown variables decide which of them will decay first. What we observe experimentally
seems to be an irreducible random process. The original explanation of this phenomenon in
quantum mechanics was rather unexpected. All atoms have the same probability of having
decayed: only when we observe the system do we select which atoms have decayed in the
past. In spite of the fact that this solution seems to be in contrast with common sense, it
is the only possible one in the framework of the conventional interpretation of quantum
mechanics. Heisenberg, de Broglie, Pauli, Dirac, and many others invented a formalism
that was able to explain and predict the experimental data and this formalism led, beyond
the very intention of the men who constructed it, to this conceptual revolution. Then, the
old problem of the relations among the observer and the observed object, discussed for
centuries by philosophers, had a unexpected evolution and now it must be seen from a
new, completely different perspective.

Once established, quantum mechanics became a wonderful and extremely powerful
tool. The properties of the different materials, the whole chemistry, became for the first
time objects that could be predicted from the theory and not only phenomenological rules
deduced from experiments. The technological discovery that shaped the second half of last
century, the transistor (i.e. the basis of all the modern electronics and computers) could not
have been invented without a deep command of quantum mechanics.

The advances of recent years have not only concentrated on the problems of interpreta-
tion that could be (wrongly) dismissed as metaphysical by some people, considering them
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to be beyond experimental tests. In the last 30 years, the whole complex of problems con-
nected to quantum mechanics and the meaning of measurements started to be studied from
a new perspective. Real, not only Gedanken experiments began to be done on some of
the most elusive properties of quantum mechanics, i.e. the existence of correlations among
spatially separated systems that could not be explained using the traditional concept of
probability. The precise quantum mechanical meaning of measurements started to be ana-
lyzed in a more refined way (e.g. quantum non-demolition measurements were introduced)
and various concepts from statistical mechanics and other fields of physics began to be
used.

This is not only an academic or philosophical problem. The possibility of construct-
ing a quantum computer, which would improve the speed of present day computers by an
incredible factor, is deeply rooted in these achievements. It is now clear that a quantum
computer can solve problems, which on conventional computers take a time exploding
as exponent of some parameter (e.g. the factorization into primes of a number of length
N ), in a time which is only a polynomial in N . The technical problems to be over-
come in constructing a quantum computer are not easy to solve, but this result has a
high conceptual status, telling us how deeply quantum mechanics differs from classical
mechanics. Another quantum-information puzzling phenomenon, i.e. teleportation, has
been recently proved experimentally to exist and it is a very active area of experimental
research.

The arguments above explain why this new situation imposes the necessity to treat this
field in a new way. The idea of writing this book came to one of us in 2000; it has taken
more than eight years to accomplish this challenge.

Outl ine

The book is divided into four parts:

I Basic features of quantum mechanics
Part I deals with the basic framework of the theory and the reasons for its birth. Fur-
thermore, starting from the fundamental principles, it explains the nature of quantum
observables and states, and presents the dynamics of quantum systems and its main
examples.

II More advanced topics
In Part II we introduce angular momentum, spin, identical particles, and symmetries.
Moreover, we give a special emphasis to the quantum theory of measurement.

III Matter and light
We devote Part III to some of the most important applications of quantum theory:
approximation methods and perturbation theory, the hydrogen atom, simple molecules,
and quantum optics.

IV Quantum information: state and correlations
Finally, we deal with the most recent topics: the quantum theory of open systems, state
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measurement, quantum correlations and non-locality, and quantum information and
computation.

In this book there is material for four one-semester courses. It may also serve as a guide
for short courses or tutorials on specific and more advanced topics.

Methodology

(1) In our exposition we have tried to follow a “logical” order, starting from the
principles of classical mechanics, the need of quantum mechanics with its fun-
damental assumptions (superposition, complementarity, and uncertainty principles).
Then, we present the main features of observables and states, before going for-
ward to the dynamics and to more sophisticated stuff, applications, and special
areas.

(2) We have made an effort to use a pedagogical style. In particular:
(i) We prove or let the reader prove (through problems that are solved on the book’s

website) practically all our results: we try to lead the reader to reach them step by
step from previous ones.

(ii) We have made the choice to present Dirac algebra and operatorial formalism from
the very beginning, instead of starting with the wave-function formalism. The lat-
ter is obtained naturally as a particular representation of the former. This approach
has the advantage that we are not obliged to repeat the fundamental mathematical
tools of the theory.

(iii) We present our main principles and results in a pragmatic way, trying to intro-
duce new concepts on the basis of experimental evidence, rather than in an
axiomatic way, which may result cumbersome for readers who are learning
quantum mechanics.

(iv) We have made an effort to pay particular attention to cross-references in order to
help the (inexpert) reader to quickly find the necessary background and related
problems.

(3) We have taken into account some of the most recent developments at theoretical and
experimental level, as well as with respect to technological applications: quantum
optics, quantum information, quantum non-locality, state measurement, etc.

(4) We believe that measurement theory constitutes a fundamental part of quan-
tum mechanics. As a consequence we have devoted an entire chapter to this
issue.

(5) When necessary, we have emphasized interpretational as well as historical issues, such
as complementarity, measurement, nature of quantum states, and so on.

(6) We propose to the reader a large number of problems (more than 300), and the less
trivial ones (about half of them) are solved in a pedagogical way.

(7) From time to time, we have chosen to treat special topics in “boxes.”
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Apparatus

Besides a large number of cross-references, we also list the following tools:

(1) The book contains 200 figures among drawings, photographs, and graphs, distributed
in all chapters (a sample of color figures can be found on the book’s website). We
consider this graphic support a very important aspect of our exposition. In this context,
figure captions are particularly accurate and often self-contained.

(2) The book contains an extensive bibliography (almost 600 entries, most of which are
quoted in the text) and a “Further reading” section at the end of each chapter. Name
of authors in italics in citations refer to books, those in roman text refer to journals,
papers, and other publications.

(3) The book contains full, accurate, and comprehensive indices (table of contents, subject
index, author index, list of figures, list of tables, list of abbreviations, list of symbols,
list of boxes, list of theorems, definitions, and so on) together with a summary of the
main concepts at the end of each chapter.

Readers

This book is addressed to people who want to learn quantum mechanics or deepen their
knowledge of the subject. The requirement for understanding the book is a knowledge of
calculus, vectorial analysis, operator algebra, and classical mechanics.

The book is primarily intended for third- and fourth-year undergraduate students in
physics. However, it may also be used for other curricula (such as mathematics, engineer-
ing, chemistry, computer sciences, etc.). Furthermore, it may well be used as a reference
book for graduate students, researchers, and practitioners, who want a rapid access to spe-
cific topics. To this purpose the extensive indices and lists are of great help. It may even
serve as an introduction to specific areas (quantum optics, entanglement, quantum informa-
tion, measurement theory) for experienced professionals from different fields of physics.
Finally, the book may prove useful for scientists of other disciplines who want to learn
something about quantum mechanics.
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P A R T I

BASIC FEATURES OF
QUANTUM MECHANICS
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1
From classical mechanics to

quantum mechanics

In this chapter we shall first summarize some conceptual and formal features of classical
mechanics (Sec. 1.1). Modern physics started with the works of Galileo Galilei and Isaac
Newton from which classical mechanics, one of the most beautiful and solid intellectual
buildings of the human history, came out. The architecture of classical mechanics was
developed between the end of the eighteenth century and the second half of the nineteenth
century, and its present form is largely due to Lagrange, Jacobi, and Hamilton. As we shall
see in this chapter, classical mechanics is built upon the requirement of determinism, a
rather complex assumption which is far from being obvious. In Sec. 1.2 we shall present
the two main conceptual features of quantum mechanics on the basis of an ideal inter-
ferometry experiment: the superposition principle and the principle of complementarity.
In Sec. 1.3 a first formal treatment of quantum-mechanical states is developed: quantum
states are represented by vectors in a space that turns out to be a Hilbert space. In Sec. 1.4
the significance of probability for quantum mechanics is explained briefly: we will show
that probability is not just an ingredient of quantum mechanics, but is rather an intrin-
sic feature of the theory. Furthermore, we shall see that quantum probability is not ruled
by Kolmogorov axioms of classical probability. Finally, we discuss the main evidences
which have historically revealed the necessity of a departure from classical mechanics.
Our task then is to briefly present the principles upon which quantum mechanics is built
(in Secs. 1.2–1.4) and to summarize in Sec. 1.5 the main evidences for this new mechanics.

1.1 Review of the foundations of classical mechanics

Classical mechanics is founded upon several principles and postulates, sometimes
only implicitly assumed. In the following we summarize and critically review such
assumptions.1

First of all, in classical mechanics a principle of perfect determination is assumed: all
properties of a physical system S are perfectly determined at any time. Here, we define a
physical system as an object or a collection of objects (somehow interrelated) that can be
(directly or indirectly) experienced through human senses, and a property as the value that
can be assigned to a physical variable or observable describing S. Perfectly determined
means then that each (observable) variable describing S has at all times a definite value.

1 See [Auletta 2004].
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Some of these properties will have a value that is a real number, e.g. the position of a
particle, others an integer value, e.g. the number of particles that constitute a compound
system.

It is also assumed that all properties can be in principle perfectly known, e.g. they can be
perfectly measured. In other terms, the measurement errors can be – at least in principle –
always reduced below an arbitrarily small quantity. This is not in contrast with the everyday
experimental evidence that any measurement is affected by a finite resolution. Hence, this
assumption can be called the postulate of reduction to zero of the measurement error. We
should emphasize that this postulate is not a direct consequence of the principle of perfect
determination because we could imagine the case of a system that is objectively determined
but cannot be perfectly known.

Moreover, the variables associated with a system S are in general supposed to be con-
tinuous, e.g. given two arbitrary values of a physical variable, all intermediate possible real
values are also allowed. This assumption is known as the principle of continuity.

At this point we can state the first consequence of the three assumptions above: If the
state of a system S is perfectly determined at a certain time t0 and its dynamical variables
are continuous and known, then, knowing also the conditions (i.e. the forces that act on the
system), it should be possible (at least in principle) to predict with certainty (i.e. with prob-
ability equal to one) the future evolution of S for all times t > t0. This in turn means that
the future of a classical system is unique. Similarly, since the classical equations of motion
(as we shall see below) are invariant under time reversal (the operation which transforms t
into−t) also the past behavior of the system for all times t < t0 is perfectly determined and
knowable once its present state is known. Such a consequence is usually called determin-
ism. Determinism is implemented by assuming that the system satisfies a set of first-order
differential equations of the form

d

dt
S = F[S(t)], (1.1)

where S is a vector describing the state of the system. It is also assumed that these equations
(called equations of motion) have one and only one solution, and this situation is usual if
the functional transformation F is not too nasty.

Another very important principle, implicitly assumed since the early days of classical
mechanics but brought into the scientific debate only in the 1930s, is the principle of sepa-
rability: given two non-interacting physical systems S1 and S2, all their physical properties
are separately determined. Stated in other terms, the outcome of a measurement on S1

cannot depend on a measurement performed on S2.
We are now in the position to define what a state in classical mechanics is. Let us first

consider for the sake of simplicity a particle moving in one dimension. Its initial state is
well defined by the position x0 and momentum p0 of the particle at time t0. The knowledge
of the equations of motion of the particle would then allow us to infer the position x(t) and
the momentum p(t) of the particle at all times t .

It is straightforward to generalize this definition to systems with n degrees of freedom.
For such a system we distinguish a coordinate configuration space {q1, q2, . . . , qn} ∈ IRn

and a momentum configuration space {p1, p2, . . . , pn} ∈ IRn, where the q j ’s ( j = 1, . . . , n)
are the generalized coordinates and the p j ’s ( j = 1, . . . , n) the generalized momenta. On
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the other hand, the phase space � is the set {q1, q2, . . . , qn ; p1, p2, . . . , pn} ∈ IR2n. The
state of a system with n degrees of freedom is then represented by a point in the 2n-
dimensional phase space �.

Let us consider what happens by making use of the Lagrangian approach. Here, the
equations of motion can be derived from the knowledge of a Lagrangian function. Given
a generalized coordinate q j , we define its canonically conjugate variable or generalized
momentum p j as the quantity

p j = ∂

∂ q̇ j
L(q1, . . . , qn ; q̇1, . . . , q̇n), (1.2)

where the q̇k are the generalized velocities. In the simplest case (position-independent
kinetic energy and velocity-independent potential) we have

L(q1, . . . , qn , q̇1, . . . : q̇n) = T (q̇1, . . . , q̇n) − V (q1, . . . , qn), (1.3)

where L is the Lagrangian function and T and V are the kinetic and potential energy,
respectively. The kinetic energy is a function of the generalized velocities q̇ j ( j = 1, . . . , n)
and may also be written as

T =
∑

j

p2
j

2m j
, (1.4)

i.e. as a function of the generalized momenta p j ( j = 1, . . . , n), where m j is the mass
associated with the j-th degree of freedom.

In an alternative approach, a classical system is defined by the function

H = T (p1, p2, . . . , pn) + V (q1, q2, . . . , qn), (1.5)

which is known as the Hamiltonian or the energy function, simply given by the sum
of kinetic and potential energy. Differently from the Lagrangian function, H is directly
observable because it represents the energy of the system. The relationship between
Lagrangian and Hamiltonian functions is given by

H =
∑

j

q̇ j p j − L(q1, . . . , qn , q̇1, . . . : q̇n) (1.6)

in conjunction with (1.2).
For the sake of simplicity we have assumed that the Lagrangian and the Hamiltonian

functions are not explicitly time-dependent. The coordinate qk and momentum pk , together
with their time derivatives q̇k , ṗk , are linked – through the Hamiltonian – by the Hamilton
canonical equations of motion

q̇k = ∂H

∂pk
, ṗk = −∂H

∂qk
, (1.7)

which can also be written in terms of the Poisson brackets as

q̇k = {qk , H}, ṗk = {pk , H}. (1.8)
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The Poisson brackets for two arbitrary functions f and g are defined as

{ f , g} =
∑

j

(
∂ f

∂q j

∂g

∂p j
− ∂ f

∂p j

∂g

∂q j

)
, (1.9)

and have the following properties:

{ f , g}=−{g, f }, (1.10a)

{ f , C}= 0, (1.10b)

{C f + C ′g, h}=C{ f , h} + C ′{g, h}, (1.10c)

0={ f , {g, h}} + {g, {h, f }} + {h, { f , g}}, (1.10d)
∂

∂t
{ f , g}=

{
∂ f

∂t
, g

}
+
{

f ,
∂g

∂t

}
, (1.10e)

where C , C ′ are constants and h is a third function. Equation (1.10d) is known as the Jacobi
identity. The advantage of this notation is that, for any function f of q and p, we can write

d

dt
f = { f , H} . (1.11)

It is easy to see that Newton’s second law can be derived from Hamilton’s equations. In
fact, from Eq. (1.8) we have

q̇k ={qk , H} = pk

mk
, (1.12a)

ṗk ={pk , H} = − ∂V

∂qk
. (1.12b)

From Eq. (1.12a) one obtains pk = mkq̇k (the definition of generalized momentum),
which, substituted into Eq. (1.12b), gives

mkq̈k = − ∂V

∂qk
. (1.13)

Since Fk = −∂V/∂qk is the generalized force relative to the k-th degree of freedom,
Eq. (1.13) can be regarded as Newton’s second law. As a consequence, Newton’s second
law can be written in terms of a first-order differential equation (as anticipated above).
However, in this case we need both the knowledge of position and of momentum for
describing a system.

In classical mechanics the equations of motion may also be determined by imposing that
the action

S =
t2∫

t1

dtL(q1, . . . , qn , q̇1, . . . , q̇n) (1.14)

has an extreme value. This is known as the Principle of least action or Maupertuis–
Hamilton principle.

The application of this principle yields the Lagrange equations

d

dt

(
∂L

∂ q̇k

)
− ∂L

∂qk
= 0, (1.15)
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