
Cambridge University Press & Assessment
978-0-521-86936-2 — Astrophysical Flows
James E. Pringle , Andrew King
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

The basic fluid equations

The subject of this book is how the matter of the visible Universe moves. Almost

all of this matter is in gaseous form, and each gram contains of order 1024

particles (atoms, ions, protons, electrons, etc.), all moving independently except

for interactions such as collisions. At first sight it might seem an impossible task

to describe the evolution of such a complicated system. However, in many cases

we can avoid most of this inherent complexity by approximating the matter as a

fluid.Afluid is an idealized continuous medium with certain macroscopic properties

such as density, pressure and velocity . This concept applies equally to gases and

liquids, and we shall take the term fluid to refer to both in this book. The structure of

matter at the atomic or molecular level is important only in fixing relations between

macroscopic fluid properties such as density and pressure, and in specifying others

such as viscosity and conductivity.

Describing a medium as a fluid is possible if we can define physical quantities

such as density ρ(r, t) or velocity u(r, t) at a particular place with position vector r at

time t. For a meaningful definition of a ‘fluid velocity’we must average over a large

number of such particles. In other words, fluid dynamical quantities are well defined

only on a scale l such that l is not only much greater than a typical interparticle

distance, but also, more restrictively, much greater than a typical particle mean

free path, λmfp.† Further, the concept of local fluid quantities is only useful if the

scale l on which they are defined is much smaller than the typical macroscopic

lengthscales L on which fluid properties vary. Thus to use the equations of fluid

dynamics we require L � l � λmfp.

If this condition fails one should, strictly, not apply the fluid dynamical equations,

but instead use concepts from plasma physics such as particle distribution func-

tions. However, the huge additional complications and large physical uncertainties

†
Roughly speaking, the mean free path is the average distance travelled by a typical particle before its

trajectory is significantly deflected by another particle.
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2 The basic fluid equations

involved here mean that astrophysicists often apply fluid dynamical equations in

situations where they are not strictly valid. The mean free path in astrophysical fluids

is typically λmfp�106(T 2/n) cm, where T is the temperature (in K) and n is the num-

ber density (in cm−3). In the centre of the Sun we have T � 107 K, n � 1026 cm−3,

so λmfp ∼ 10−6 cm. This is far smaller than the solar radius R� = 7×1010 cm, so the

fluid approximation is very good. In the solar wind, however, we have T ∼ 105 K,

n ∼ 10 cm−3 near the Earth’s orbit, so that λmfp ∼ 1015 cm. This is far greater than

the Sun–Earth distance, which is 1.5 × 1013 cm. Thus the fluid approximation does

not apply well here, and the treatment of the interaction of the solar wind with the

Earth’s magnetosphere requires plasma physics. As a final example, the diffuse gas

in a cluster of galaxies typically has T � 3 × 107 K, n � 10−3 cm−3, and hence

λmfp ∼ 1024 cm. This is of the same order as the physical size ∼ 1 Mpc of a rich

cluster. The fluid approximation is at best marginal for the diffuse regions of the

cluster gas, but is nevertheless often used to gain a crude insight into its dynamics,

heating and cooling. The dimensionless ratio λmfp/L of mean free path to typical

flow lengthscale is called the Knudsen number Kn; Kn � 1 is a necessary condition

for the validity of the fluid approximation. The results above show that Kn � 1 in

the interior of the Sun, Kn � 1 in the solar wind, and Kn ∼ 1 in cluster gas.

In this book we assume that the reader already has some familiarity with fluid

dynamics, though not necessarily in an astrophysical context. For this reason the

following derivation and discussion of the equations of fluid dynamics is brief. It is

aimed mainly at establishing notation, as well as stressing those properties of fluids

relevant to astrophysics which may be less familiar to fluid dynamicists from other

fields.

1.1 Conservation of mass and momentum

The equations of fluid dynamics express conservation laws, and indeed one can use

this basic property advantageously in devising numerical methods to solve them.

1.1.1 Mass conservation

Consider a fixed finite volume V within the fluid, bounded by the surface S. Then

the mass of fluid contained within the volume is given by
∫

V

ρ dV . (1.1)

The mass contained in V can change only through a flux of fluid through the

surface S. Thus conservation of mass implies the following:

d

dt

∫

V

ρ dV = −

∫

S

ρu · dS, (1.2)
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1.1 Conservation of mass and momentum 3

where dS is the (vector) element of area on the surface S. The volume is fixed, so

we can take the derivative inside the term on the left-hand side (l.h.s.) and apply

the divergence theorem to the term on the right-hand side (r.h.s.) to obtain
∫

V

{

∂ρ

∂t
+ div(ρu)

}

dV = 0. (1.3)

Since the volume V is arbitrary, we conclude that the integrand must itself vanish,

that is
∂ρ

∂t
+ div(ρu) = 0, (1.4)

and, equivalently, in suffix notation

∂ρ

∂t
+

∂

∂xj

(ρuj) = 0. (1.5)

1.1.2 Momentum conservation

The momentum equation is obtained in exactly the same way by considering the

rate of change of the total momentum in the volume V , given by

d

dt

∫

V

ρ u dV . (1.6)

The additional complication here is that as well as considering the flux of momentum

across the surface S, we must take account of both the body force per unit volume

fi acting on the fluid and the surface stress given by an appropriate stress tensor Tij.

The momentum equation is then given by

∂

∂t
(ρui) +

∂

∂xj

(ρuiuj) = fi +
∂

∂xj

[Tij]. (1.7)

In this book we consider two main contributors to the body force. First we write

the gravitational force as follows:

fi = −ρ
∂�

∂xi

, (1.8)

where the gravitational potential � is related to the density through Poisson’s

equation:

∇
2� = 4πGρ, (1.9)

where G is the gravitational constant. Second we take the magnetic force in the

following form:

fi = (j ∧ B)i, (1.10)

where j is the current and B is the magnetic field.
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4 The basic fluid equations

We shall also briefly consider the electric force,

fi = ρQ Ei, (1.11)

where ρQ is the electric charge density and E is the electric field.

We define the stress tensor as follows. Consider an infinitesimal vector surface

element dS within the fluid, where by convention the magnitude of the vector is the

area of the surface element and the direction of the vector is normal to the surface

element. Then the surface element is subject to a surface force F given by

Fi = Tij dSj. (1.12)

We note that since both dS and F are vectors, then by the quotient rule Tij is a

second-order tensor.

In this book the main contributor to the stress tensor that we consider is the

pressure p in the form

Tij = −pδij, (1.13)

where we make use of the Kronecker delta. In Section 1.5 we shall also write the

magnetic force as a stress tensor as follows:

mij = BiBj −
1

2
δijBkBk . (1.14)

Although we do not consider viscous effects in this book, we note here that the

viscous stress terms come from relating the viscous contribution to the stress tensor

to the second-order tensor ∂ui/∂xj. This contains information about the relative flow

of neighbouring fluid elements and is called the (rate of) strain tensor. Physically

this expresses the fact that microscopic (especially thermal) motions within the

ensemble of gas particles can transport momentum over distances of order the

mean free path.

Finally, using the mass conservation equation, eq. (1.4), to replace the term ∂ρ/∂t,

we obtain the momentum equation (or the equation of motion of the fluid) in the

following form:
∂ui

∂t
+ uj

∂ui

∂xj

= −
1

ρ

∂p

∂xi

−
∂�

∂xi

+
∂mij

∂xj

. (1.15)

1.2 The Lagrangian derivative

We can consider the evolution of a fluid quantity like the density ρ(r, t) in two

ways. The partial derivative ∂ρ/∂t used above measures the way ρ changes with

time t at a fixed position r. But it is often more useful to consider the rate of change

of the density of a particular fluid element as it moves with the fluid. This rate is

called the Lagrangian derivative and is denoted by Dρ/Dt. We need to establish

the relationship between these two concepts.
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1.3 Conservation of energy 5

Suppose that a particular fluid element is at position r0 at time t = 0, and at a

later time t is at a new position r(r0, t). Then the velocity of the fluid element is

given by

u =
∂

∂t
r(r0, t), (1.16)

where the partial derivative is taken at fixed r0. The Lagrangian derivative of (for

example) the density of that particular fluid element is then simply given by

Dρ

Dt
=

∂

∂t
ρ(r(r0, t), t), (1.17)

with the partial derivative taken at fixed r0. Since t appears in two places on the r.h.s.

we may expect two terms in the derivative. Using the chain rule and the definition

of u above we obtain
Dρ

Dt
=

∂ρ

∂t
+ u · ∇ρ. (1.18)

Thus, more generally the operator denoting the rate of change of a quantity

following the fluid motion (the Lagrangian derivative) is given by

D

Dt
=

∂

∂t
+ u · ∇. (1.19)

1.3 Conservation of energy

We consider the heat content of a unit mass of fluid. In terms of thermodynamic

quantities, a small change in the internal heat content of this unit mass is given by

T dS = de + p dV , (1.20)

where T is the temperature, S is the entropy per unit mass, e is the internal energy

per unit mass and V is the volume per unit mass. In terms of the density it is evident

that V = 1/ρ, and thus

TdS = de − p
dρ

ρ2
. (1.21)

Hence in a fluid flow, the rate of change of the heat content of a particular fluid

element of unit mass is given by

T
DS

Dt
=

De

Dt
−

p

ρ2

Dρ

Dt
. (1.22)

The heat content of a fluid element can change through effects of two types.

First, there may be heat flow into or out of the element. We shall refer to this

generically as ‘conduction’. However, in the astrophysical context heat can be

conducted both by gas particles (typically electrons, since they move faster than

the ions) as in standard thermal conduction and also by photons (known as radiative
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6 The basic fluid equations

transfer). In both cases, the heat flux h in units of energy per unit area per unit time

can often be written in the following form:

h = −λ∇T, (1.23)

which implies physically that the heat flux occurs down the temperature gradient at

a rate proportional to some ‘thermal conductivity’λ. We expect λ to be a function of

thermodynamic variables such as T and ρ. This form of the heat flux is appropriate

provided that the particles carrying the heat have mean free paths much smaller

than the typical lengthscale L over which macroscopic fluid quantities change.

For electrons or molecules this is equivalent to the requirements of the fluid

approximation, whereas for photons it requires in addition that the fluid should

be opaque (‘optically thick’) so that there are very large numbers of interactions

between photons and the fluid over lengthscales L.

Second, there may be internal generation of heat. This can result from dissipation

of kinetic energy by viscosity or dissipation of magnetic energy through resistivity

(or electrical conductivity). We do not consider these processes in this book. In the

astrophysical context internal energy can be generated by nuclear processes (such

as nuclear energy generation in stars) and by a change in ionization of the fluid. It

can also be caused by heat exchange with particles which have a low collision cross

section, for example heating by cosmic rays in the interstellar medium and radiative

heating and/or cooling in an optically thin gas. We shall denote the generation of

internal energy by ε in units of energy per unit volume per unit time.

To convert from the rate of change of a unit mass of fluid (given by eq. (1.22))

to the rate of change per unit volume, we multiply by the mass per unit volume, i.e.

the density. Thus the heat equation becomes

ρT
DS

Dt
= −div h + ε. (1.24)

1.4 The equation of state and useful approximations

To complete the set of equations obtained so far we need a relationship of the form

p = p(ρ, T ), which is the equation of state for the fluid. In this book we shall assume

the simplest form of the relationship, namely the equation of state of a perfect gas,

p =
R

µ
ρT , (1.25)

where R is the gas constant and µ is the mean particle mass, assumed to be constant.

We also note that
R

µ
= cp − cV , (1.26)
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1.4 The equation of state and useful approximations 7

where cp = T (∂S/∂T )p is the specific heat at constant pressure and cV =

T (∂S/∂T )V is the specific heat at constant volume.Alternatively this may be written

as follows:

p = (γ − 1)ρe, (1.27)

where γ = cp/cV is the ratio of specific heats, and we note for a perfect gas that

e = cV T . (1.28)

To understand the physics of a particular fluid dynamical situation it is often not

necessary to include the full thermodynamic complexity of the fluid. In these cases

we can simplify and/or circumvent the heat equation.

1.4.1 Incompressible approximation

The major difference between astrophysical fluids and those encountered in

many terrestrial situations (including those encountered in many courses on fluid

dynamics) is that astrophysical ones are highly compressible. However, in situations

where fluid motions are slow compared with the sound speed, density gradients are

quickly smoothed out and it is a useful approximation to treat the fluid as if it were

incompressible. In physical terms this means that any particular element of the fluid

does not change its density, which implies that

Dρ

Dt
= 0. (1.29)

It is important to realise that this does not imply that the fluid itself has constant

density, so we may not write ρ = constant, unless the original fluid state has

uniform density.

1.4.2 Adiabatic flow

If the flow occurs fast enough that no fluid element has time to exchange heat with

its surroundings, and if energy generation within the fluid is negligible, the heat

equation simplifies to

DS

Dt
= 0. (1.30)

In other words, each fluid element evolves at constant entropy – it remains on the

same adiabat.

At constant entropy we note that

Dp

Dt
=

(

∂p

∂ρ

)

S

Dρ

Dt
, (1.31)
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8 The basic fluid equations

and that
(

∂p

∂ρ

)

S

=
cp

cV

(

∂p

∂ρ

)

T

. (1.32)

Since for a perfect gas
(

∂p

∂ρ

)

T

=
p

ρ
, (1.33)

on using γ = cp/cV we obtain

D

Dt
ln p = γ

D

Dt
ln ρ. (1.34)

Thus for adiabatic flow we may assume that

D

Dt
( p/ργ ) = 0. (1.35)

We note again that this does not imply that the entropy of the fluid is constant

everywhere. But in this case if the fluid is initially isentropic (has uniform entropy)

then it remains so.

1.4.3 Barotropic flow

We can avoid using the heat equation, and therefore simplify the analysis, by

assuming that pressure is solely a function of density, i.e. p = p(ρ). This is a useful

approximation when the detailed thermal properties of the fluid are not directly

relevant to the dynamics under consideration. Barotropic flow is more general

than isentropic flow, and includes isothermal flow (for which p ∝ ρ) as well as

the polytropic approximation to the equation of state (relevant to fully degenerate

matter),

p = Aρ1+1/n, (1.36)

where A and n are constants and n is called the polytropic index.

1.5 The MHD approximation

Astrophysical fluids are usually highly ionized (and so highly conducting) and

permeated by magnetic fields. Understanding the interaction between the fluid and

the magnetic fields it contains is therefore often important. The usual treatment of

this interaction uses the magnetohydrodynamics (MHD) approximation. We stress

that this is an approximation and that, in common with the fluid approximation, it

is often tempting to use it in contexts where its validity is stretched.

We start by considering a fluid flow with a typical flow lengthscale L and typical

flow timescale T . The usual MHD approximation depends on the assumption that

the resulting typical flow velocity U is much less than the speed of light, i.e.
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1.5 The MHD approximation 9

U ∼ L/T � c. The approximation stems from the use of Ohm’s law applied

locally in the frame of the fluid. Thus we need to be able to transform between

the fields (E, B) in the inertial frame and the fields (E′, B′) in the frame of the

fluid, which is moving with velocity u. These are related by the usual Lorentz

transformation:

E′
= (1 − γ )

(

u · E

u2

)

u + γ (E + u ∧ B), (1.37)

and

B′
= (1 − γ )

(

u · B

u2

)

u + γ

(

B −
1

c2
u ∧ E

)

, (1.38)

where

γ =

(

1 −
u2

c2

)−1/2

. (1.39)

Taking the low-velocity approximation u2 � c2 and neglecting terms of order

(u2/c2), these relations become

E′
= E + u ∧ B (1.40)

and

B′
= B. (1.41)

The time evolution of the magnetic field is determined from the Maxwell

equation,
∂B

∂t
= −curl E. (1.42)

By comparing dimensional quantities on each side of the equation we see that to

order of magnitude B/T ∼ E/L, or equivalently E ∼ (L/T )B ∼ UB.

The second relevant Maxwell equation is as follows:

µ−1
0 curl B = j + ε0

∂E

∂t
. (1.43)

The second term on the r.h.s. is the displacement current, which permits the

propagation of electromagnetic waves in vacuum with speed c, where c2 = 1/ε0µ0.

However, in the MHD approximation we neglect the displacement current. This is

because the ratio between the displacement current and the term on the l.h.s. is given

to order of magnitude as (ε0E/T )/(B/µ0L) ∼ (E/B)(U/c2) ∼ U 2/c2 � 1. Thus

in the MHD approximation, electromagnetic waves are excluded and the current is

given by

j = µ−1
0 curl B. (1.44)

Since B′ = B, it follows that the current in the frame of the fluid is given by

j′ = j. (1.45)
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10 The basic fluid equations

In the frame of the fluid Ohm’s law becomes j′ = σE′, where σ is the conductivity.

In this book we make the additional assumption that the conductivity is infinite,

which then implies that E′ = 0, i.e. that

E = −u ∧ B. (1.46)

Substituting this into eq. (1.42) we obtain the induction equation,

∂B

∂t
= curl(u ∧ B), (1.47)

which describes the time evolution of the magnetic field in the ideal MHD

approximation.

We also need to consider the electromagnetic force acting on the fluid. The

Lorentz force is given by

f = ρQ E + j ∧ B. (1.48)

The charge density ρQ is related to the electric field E through the following

Maxwell equation:

div E = ρQ/ε0. (1.49)

Thus the ratio between the electric and magnetic contributions to the Lorentz force

on the fluid is (using eq. (1.44)) to order of magnitude (ε0E2/L)/(B2/Lµ0) ∼

U 2/c2. Further, the current ρQu supplied by the moving charge density is also

∼U 2/c2 times the current j. Thus in the MHD approximation we can neglect both

the electric charge and the electric field, and the electromagnetic force on the fluid

is (using eq. (1.44)) simply given by

f = µ−1
0 (curl B ∧ B). (1.50)

We can write this as

fi =
∂mik

∂xk

, (1.51)

where

mik = µ−1
0

(

BiBk −
1

2
B2δik

)

, (1.52)

and we have used the final Maxwell equation,

div B = 0. (1.53)

1.5.1 Notation and units

We can now see that in the MHD approximation the electric field does not appear in

any of the equations. The magnetic field appears only in the induction equation and

in the Lorentz force. The induction equation is already dimensionally consistent

and so does not change if different units are used for B. In the Lorentz force the
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