MODERN PLASMA PHYSICS VOLUME 1: PHYSICAL KINETICS OF TURBULENT PLASMAS

This three-volume series presents the ideas, models and approaches essential to understanding plasma dynamics and self-organization for researchers and graduate students in plasma physics, controlled fusion and related fields such as plasma astrophysics.

Volume 1 develops the physical kinetics of plasma turbulence through a focus on quasi-particle models and dynamics. It discusses the essential physics concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The book connects the traditionally "plasma" topic of weak or wave turbulence theory to more familiar fluid turbulence theory, and extends both to the realm of collisionless phase space turbulence. This gives readers a deeper understanding of these related fields, and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. This book emphasizes the conceptual foundations and physical intuition underpinnings of plasma turbulence theory.

PATRICK H. DIAMOND is a Professor of Physics and Distinguished Professor at the Center for Astrophysics and Space Sciences and the Department of Physics at the University of California at San Diego, USA.

SANAE-I. ITOH is a Distinguished Professor at the Research Institute for Applied Mechanics at Kyushu University, Japan.

KIMITAKA ITOH is a Fellow and Professor at the National Institute for Fusion Science, Japan.

All three authors have extensive experience in turbulence theory and plasma physics.

MODERN PLASMA PHYSICS

Volume 1: Physical Kinetics of Turbulent Plasmas

PATRICK H. DIAMOND

University of California at San Diego, USA

SANAE-I. ITOH Kyushu University, Japan

KIMITAKA ITOH National Institute for Fusion Science, Japan

CAMBRIDGE

Cambridge University Press 978-0-521-86920-1- Modern Plasma Physics, Volume 1: Physical Kinetics of Turbulent Plasmas Patrick H. Diamond, Sanae-I. Itoh, Kimitaka Itoh Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521869201

© P. H. Diamond, S.-I. Itoh and K. Itoh 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Diamond, Patrick H. Modern plasma physics / Patrick H. Diamond, Sanae-I. Itoh, Kimitaka Itoh. p. cm. ISBN 978-0-521-86920-1 (Hardback) 1. Plasma turbulence. 2. Kinetic theory of matter. I. Itoh, S. I. (Sanae I), 1952– II. Itoh, K. (Kimitaka) III. Title. QC718.5.T8D53 2010 530.4'4-dc22

2009044418

ISBN 978-0-521-86920-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Р	refac	ce		<i>page</i> xi	
A	ckno	wledge	ements	XV	
1	Int	Introduction			
	1.1	Why?	,	1	
	1.2	The p	urpose of this book	4	
	1.3	ership and background literature	6		
	1.4	Conte	nts and structure of this book	7	
	1.5	On us	ing this book	15	
2	Conceptual foundations			18	
	2.1	.1 Introduction			
	2.2	Dressed test particle model of fluctuations in a plasma near			
		equilibrium		20	
		2.2.1	Basic ideas	20	
		2.2.2	Fluctuation spectrum	24	
		2.2.3	Relaxation near equilibrium and the Balescu-Lenard		
			equation	35	
		2.2.4	Test particle model: looking back and looking ahead	48	
	2.3 Turbulence: dimensional analysis and beyond – revisiting the				
		theory	of hydrodynamic turbulence	51	
		2.3.1	Key elements in Kolmogorov theory of cascade	51	
		2.3.2	Two-dimensional fluid turbulence	57	
		2.3.3	Turbulence in pipe and channel flows	65	
		2.3.4	Parallels between K41 and Prandtl's theory	71	
3	Quasi-linear theory				
	3.1 The why and what of quasi-linear theory				
	3.2	3.2 Foundations, applicability and limitations of quasi-linear theory			

vi		Contents	
	3.2.1	Irreversibility	77
	3.2.2	Linear response	79
	3.2.3	Characteristic time-scales in resonance processes	80
	3.2.4	Two-point and two-time correlations	82
	3.2.5	Note on entropy production	85
3.3	Energy and momentum balance in quasi-linear theory		86
	3.3.1	Various energy densities	86
	3.3.2	Conservation laws	88
	3.3.3	Roles of quasi-particles and particles	90
3.4	Applications of quasi-linear theory to bump-on-tail		
	instability		92
	3.4.1	Bump-on-tail instability	92
	3.4.2	Zeldovich theorem	93
	3.4.3	Stationary states	95
2.6	3.4.4	Selection of stationary state	95
3.2	2 5 1	Connection of quasi-linear theory to drift waves	99
	3.3.1	Quesi linear equations for drift wave turbulance	102
	3.5.2	Saturation via a quasi linear mechanism	102
36	5.5.5 Annli	cation of quasi-linear theory to jon mixing mode	104
3.0	/ Nonli	near Landau damping	103
3.8	Kubo	number and tranning	100
5.0	i Kubo	number and dapping	111
4 No	onlinear	r wave-particle interaction	114
4.1	Prolo	gue and overview	114
4.2	2 Resor	nance broadening theory	117
	4.2.1	Approach via resonance broadening theory	117
	4.2.2	Application to various decorrelation processes	124
	4.2.3	Influence of resonance broadening on mean evolution	128
4.3	Renor	rmalization in Vlasov turbulence I: Vlasov response	
	functi	function	
	4.3.1	Issues in renormalization in Vlasov turbulence	130
	4.3.2	One-dimensional electron plasmas	131
4.4	Reno	rmalization in Vlasov turbulence II: drift wave turbulence	135
	4.4.1	Kinetic description of drift wave fluctuations	135
	4.4.2	Concrent nonlinear effect via resonance broadening	100
	1 1 2	Concernation revisited	136
	4.4.3	Conservative formulations	13/
	4.4.4 1 1 5	Conservative formulations	139
	4.4.3	rnysics coment and predictions	142

CAMBRIDGE

Cambridge University Press 978-0-521-86920-1- Modern Plasma Physics, Volume 1: Physical Kinetics of Turbulent Plasmas Patrick H. Diamond, Sanae-I. Itoh, Kimitaka Itoh Frontmatter More information

			Contents	vii
5	Kir	etics o	of nonlinear wave–wave interaction	150
	5.1	Introc	luction and overview	150
		5.1.1	Central issues and scope	150
		5.1.2	Hierarchical progression in discussion	151
	5.2	The in	ntegrable dynamics of three coupled modes	154
		5.2.1	Free asymmetric top (FAT)	154
		5.2.2	Geometrical construction of three coupled modes	155
		5.2.3	Manley–Rowe relation	158
		5.2.4	Decay instability	161
		5.2.5	Example – drift–Rossby waves	162
		5.2.6	Example – unstable modes in a family of drift waves	165
	5.3	The p	hysical kinetics of wave turbulence	166
		5.3.1	Key concepts	166
		5.3.2	Structure of a wave kinetic equation	169
		5.3.3	'Collision' integral	173
		5.3.4	Application to drift-Rossby wave	180
		5.3.5	Issues to be considered	185
	5.4	The s	caling theory of local wave cascades	186
		5.4.1	Basic ideas	186
		5.4.2	Gravity waves	191
	5.5	Non-l	local interaction in wave turbulence	195
		5.5.1	Elements in disparate scale interaction	195
		5.5.2	Effects of large/meso scale modes on micro fluctuations	198
		5.5.3	Induced diffusion equation for internal waves	199
		5.5.4	Parametric interactions revisited	203
6	6 Closure theory		heory	208
	6.1	Conce	epts in closure	208
		6.1.1	Issues in closure theory	210
		6.1.2	Illustration: the random oscillator	212
		6.1.3	Illustration by use of the driven-Burgers/KPZ equation (1)	216
		6.1.4	Illustration by use of the driven-Burgers/KPZ equation (2)	225
		6.1.5	Short summary of elements in closure theory	230
		6.1.6	On realizability	231
	6.2	Mori-	-Zwanzig theory and adiabatic elimination	233
		6.2.1	Sketch of projection and generalized Langevin equation	234
		6.2.2	Memory function and most probable path	237
	6.3	Lange	evin equation formalism and Markovian approximation	244
		6.3.1	Langevin equation approximation	244
		6.3.2	Markovian approximation	246

CAMBRIDGE

Cambridge University Press 978-0-521-86920-1- Modern Plasma Physics, Volume 1: Physical Kinetics of Turbulent Plasmas Patrick H. Diamond, Sanae-I. Itoh, Kimitaka Itoh Frontmatter More information

viii		Contents	
6.4	Closure model for drift waves		
	6.4.1	Hasegawa–Mima equation	247
	6.4.2	Application of closure modelling	248
	6.4.3	On triad interaction time	253
	6.4.4	Spectrum	255
	6.4.5	Example of dynamical evolution – access to statistical	256
65	Class	equilibrium and H-theorem	230
6.6	Short	note on prospects for closure theory	260
7 Die	narato	scale interactions	266
7 1	Short		266
7.1	Lang	muir waves and self-focusing	260
1.2	7 2 1	Zakharov equations	269
	7 2 2	Subsonic and supersonic limits	202
	7.2.3	Subsonic limit	273
	7.2.4	Illustration of self-focusing	274
	7.2.5	Linear theory of self-focusing	276
7.3	Lang	muir wave turbulence	277
	7.3.1	Action density	278
	7.3.2	Disparate scale interaction between Langmuir turbulence	
		and acoustic turbulence	278
	7.3.3	Evolution of the Langmuir wave action density	281
	7.3.4	Response of distribution of quasi-particles	283
	7.3.5	Growth rate of modulation of plasma waves	286
	7.3.6	Trapping of quasi-particles	287
	7.3.7	Saturation of modulational instability	289
7.4	Colla	pse of Langmuir turbulence	291
	7.4.1	Problem definition	291
	7.4.2	Adiabatic Zakharov equation	293
	7.4.3	Collapse of plasma waves with spherical symmetry	293
	7.4.4	Note on 'cascade versus collapse'	297
8 Ca	scades,	, structures and transport in phase space turbulence	299
8.1	Motiv	vation: basic concepts of phase space turbulence	299
	8.1.1	Issues in phase space turbulence	299
	8.1.2	Granulation – what and why	305
8.2	2 Statistical theory of phase space turbulence		
	8.2.1	Structure of the theory	314
	8.2.2	Physics of production and relaxation	318

	Contents	ix		
8.2.3 Ph	sysics of relative dispersion in Vlasov turbulence	329		
8.3 Physics o	f relaxation and turbulent states with granulation	340		
8.4 Phase spa	ace structures – a look ahead	347		
9 MHD turbul	9 MHD turbulence			
9.1 Introduct	ion to MHD turbulence	348		
9.2 Towards	Towards a scaling theory of incompressible MHD turbulence			
9.2.1 Ba	sic elements: waves and eddies in MHD turbulence	350		
9.2.2 Cr	oss-helicity and Alfvén wave interaction	351		
9.2.3 He	euristic discussion of Alfvén waves and cross-helicity	353		
9.2.4 M	HD turbulence spectrum (I)	355		
9.2.5 M	HD turbulence spectrum (II)	357		
9.2.6 Aı	n overview of the MHD turbulence spectrum	359		
9.3 Nonlinea	Nonlinear Alfvén waves: compressibility, steepening			
and dispa	rate-scale interaction	362		
9.3.1 Ef	fect of small but finite compressibility	362		
9.3.2 A	short note, for perspective	366		
9.4 Turbulent	Turbulent diffusion of magnetic fields: a first step in mean			
field elect	trodynamics	366		
9.4.1 A	short overview of issues	366		
9.4.2 Fl	ux diffusion in a two-dimensional system: model			
an	d concepts	367		
9.4.3 M	ean field electrodynamics for $\langle A \rangle$ in a two-dimensional			
sy	stem	370		
9.4.4 Tu	rbulent diffusion of flux and field in a three-dimensional			
sy	stem	380		
9.4.5 Di	scussion and conclusion for turbulent diffusion			
of	a magnetic field	384		
Appendix 1 Ch	arney–Hasegawa–Mima equation	385		
Appendix 2 No	Appendix 2 Nomenclature			
References	References			
Index		415		

Preface

The universe abounds with plasma turbulence. Most of the matter that we can observe directly is in the plasma state. Research on plasmas is an active scientific area, motivated by energy research, astrophysics and technology. In nuclear fusion research, studies of confinement of turbulent plasmas have lead to a new era, namely that of the international thermonuclear (fusion) experimental reactor, ITER. In space physics and in astrophysics, numerous data from measurements have been heavily analyzed. In addition, plasmas play important roles in the development of new materials with special industrial applications.

The plasmas that we encounter in research are often far from thermodynamic equilibrium: hence various dynamical behaviours and structures are generated because of that deviation. The deviation is often sufficient for observable mesoscale structures to be generated. Turbulence plays a key role in producing and defining observable structures. An important area of modern science has been recognized in this research field, namely, research on structure formation in turbulent plasmas associated with electromagnetic field evolution and its associated selection rules. Surrounded by increasing and detailed information on plasmas, some unified and distilled understanding of plasma dynamics is indeed necessary – *"Knowledge must be developed into understanding"*. The understanding of turbulent plasma is a goal for scientific research in plasma physics in the twenty-first century.

The objective of this series on modern plasma physics is to provide the viewpoint and methods which are essential to understanding the phenomena that researchers on plasmas have encountered (and may encounter), i.e., the mutually regulating interaction of strong turbulence and structure formation mechanisms in various strongly non-equilibrium circumstances. Recent explosive growth in the knowledge of plasmas (in nature as well as in the laboratory) requires a systematic explanation of the methods for studying turbulence and structure formation.

xii

Preface

The rapid growth of experimental and simulation data has far exceeded the evolution of published monographs and textbooks. In this series of books, we aim to provide systematic descriptions (1) for the theoretical methods for describing turbulence and turbulent structure formation, (2) for the construction of useful physics models of far-from-equilibrium plasmas and (3) for the experimental methods with which to study turbulence and structure formation in plasmas. This series will fulfil needs that are widely recognized and stimulated by discoveries of new astrophysical plasmas and through advancement of laboratory plasma experiments related to fusion research. For this purpose, the series constitutes three volumes: Volume 1: Physical kinetics of turbulent plasmas, Volume 2: Turbulence theory for structure formation in plasmas and Volume 3: Experimental methods for the study of turbulent plasmas. This series is designed as follows.

Volume 1: *Physical Kinetics of Turbulent Plasmas* The objective of this volume is to provide a systematic presentation of the theoretical methods for describing turbulence and turbulent transport in strongly non-equilibrium plasmas. We emphasize the explanation of the progress of theory for strong turbulence. A viewpoint, i.e., that of the "quasi-particle plasma" is chosen for this book. Thus we describe 'plasmas of excitons, dressed by collective interaction', which enable us to understand the evolution and balance of plasma turbulence.

We stress (a) test field response (particles and waves, respectively), taking into account screening and dressing, as well as noise, (b) disparate scale interaction and (c) mean field evolution of the screened element gas. These three are essential building blocks with which to construct a physics picture of plasma turbulence in a strongly non-equilibrium state. In the past several decades, distinct progress has been made in this field, and verification and validation of nonlinear simulations are becoming more important and more intensively pursued. This is a good time to set forth a systematic explanation of the progress in methodology.

Volume 2: *Turbulence Theory for Structure Formation in Plasmas* This volume presents the description of the physics pictures and methods to understand the formation of structures in plasmas. The main theme has two aspects. The first is to present ways of viewing the system of turbulent plasmas (such as toroidal laboratory plasmas, etc.), in which the dynamics for both self-sustaining structure and turbulence coexist. The other is to illustrate key organizing principles and to explain appropriate methods for their utilization. The competition (e.g., global inhomogeneity, turbulent transport, quenching of turbulence, etc.) and self-sustaining mechanisms are described.

One particular emphasis is on a self-consistent description of the mechanisms of structure formation. The historical recognition of the proverb "*All things flow*" means that structures, which disappear within finite lifetimes, can also be, and are usually, continuously generated. Through the systematic description of plasma

Preface

xiii

turbulence and structure formation mechanisms, this book illuminates principles that govern evolution of laboratory and astrophysical plasmas.

Volume 3: *Experimental Methods for the Study of Turbulent Plasmas* The main objective is this volume is to explain methods for the experimental study of turbulent plasmas. Basic methods to identify elementary processes in turbulent plasmas are explained. In addition, the design of experiments for the investigation of plasma turbulence is also discussed with the aim of future extension of experimental studies. This volume has a special feature. While many books and reviews have been published on plasma diagnostics, i.e., how to obtain experimental signals in high temperature plasmas, little has been published on how one analyzes the data in order to identify and extract the physics of nonlinear processes and nonlinear mechanisms. In addition, the experimental study of nonlinear phenomena requires a large amount of data processing. This volume explains the methods for performing quantitative studies of experiments on plasma turbulence.

Structure formation in turbulent media has been studied for a long time, and the proper methodology to model (and to formulate) has been elusive. This series of books will offer a perspective on how to understand plasma turbulence and structure formation processes, using advanced methods.

Regarding readership, this book series is aimed at the more advanced graduate student in plasma physics, fluid dynamics, astrophysics and astrophysical fluids, nonlinear dynamics, applied mathematics and statistical mechanics. Only minimal familiarity with elementary plasma physics at the level of a standard introductory text is presumed. Indeed, a significant part of this book is an outgrowth of advanced lectures given by the authors at the University of California, San Diego, at Kyushu University and at other institutions. We hope the book may be of interest and accessible to postdoctoral researchers, to experimentalists and to scientists in related fields who wish to learn more about this fascinating subject of plasma turbulence.

In preparing this manuscript, we owe much to our colleagues for our scientific understanding. For this, we express our sincere gratitude in the Acknowledgements. There, we also acknowledge the funding agencies that have supported our research. We wish to show our thanks to young researchers and students who have helped in preparing this book, by typing and formatting the manuscript while providing invaluable feedback: in particular, Dr. N. Kasuya of NIFS and Mr. S. Sugita of Kyushu University for their devotion, Dr. F. Otsuka, Dr. S. Nishimura, Mr. A. Froese, Dr. K. Kamataki and Mr. S. Tokunaga of Kyushu University also deserve mention. A significant part of the material for this book was developed in the Nonlinear Plasma Theory (Physics 235) course at UCSD in 2005. We thank the students in this class, O. Gurcan, S. Keating, C. McDevitt, H. Xu and A. Walczak for their penetrating questions and insights. We would like to express our gratitude

xiv

Preface

to all of these young scientists for their help and stimulating interactions during the preparation of this book. It is our great pleasure to thank Kyushu University, the University of California, San Diego, and National Institute for Fusion Science for their hospitality while the manuscript of the book was prepared. Last but not least, we thank Dr. S. Capelin and his staff for their patience during the process of writing this book.

Acknowledgements

The authors acknowledge their mentors, for guiding their evolution as plasma physicists: Thomas H. Dupree, Marshall N. Rosenbluth, Tihiro Ohkawa, Fritz Wagner and Akira Yoshizawa: the training and challenges they gave us form the basis of this volume.

The authors are also grateful to their teachers and colleagues (in alphabetical order), R. Balescu, K. H. Burrell, B. A. Carreras, B. Coppi, R. Dashen, A. Fujisawa, A. Fukuyama, X. Garbet, T. S. Hahm, A. Hasegawa, D. W. Hughes, K. Ida, B. B. Kadomtsev, H. Mori, K. Nishikawa, S. Tobias, G. R. Tynan, M. Yagi, M. Wakatani and S. Yoshikawa. Their instruction, collaboration and many discussions have been essential and highly beneficial to the authors.

We also wish to express our sincere gratitude to those who have given us material for the preparation of the book. In alphabetical order, J. Candy, Y. Gotoh, O. Gurcan, K. Hallatschek, F. L. Hinton, C. W. Horton, S. Inagaki, F. Jenko, N. Kasuya, S. Keating, Z. Lin, C. McDevitt, Y. Nagashima, H. Sugama, P. W. Terry, S. Toda, A. Walczak, R. Waltz, T.-H. Watanabe, H. Xu, T. Yamada and N. Yokoi.

We wish to thank funding agencies that have given us support during the course of writing this book. We were partially supported by Grant-in-Aid for Specially-Promoted Research (16002005) of MEXT, Japan [Itoh project], by Department of Energy Grant Nos. DE-FG02-04ER54738, DEFC02-08ER54959 and DE-FC02-08ER54983, by Grant-in-Aid for Scientific Research (19360418, 21224014) of the Japan Society for the Promotion of Science, by the Asada Eiichi Research Foundation and by the collaboration programmes of the Research Institute for Applied Mechanics of Kyushu University, and of the National Institute for Fusion Science.