
Cambridge University Press
978-0-521-86902-7 — The Principle of Least Action
Alberto Rojo , Anthony Bloch 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Introduction

The idea of writing a book on the principle of least action came to us after many

conversations over coffee, while we pondered ways of communicating to students

the ideas of mechanics with an historical flavor. We chose the principle of least

action because we think that its importance and aesthetic value as a unifying idea

in physics is not sufficiently emphasized in regular courses. To the general public,

even to those interested in science at a popular level, the beautiful notion that the

fundamental laws of physics can be expressed as the minimum (or an extremum) of

something often seems foreign. Nature loves extremes. Soap films seek to minimize

their surface area, and adopt a spherical shape; a large piece of matter tends to

maximize the gravitational attraction between its parts, and as a result the planets

are also spherical; light rays refracting in a glass window bend and follow the path

of least time; the orbits of the planets are those that minimize something called

the “action;” and the path that a relativistic particle chooses to follow between two

events in space-time is the one that maximizes the time measured by a clock on the

particle.

Our initial intention was to write a popular book, but the project morphed into

a more technical presentation. Nevertheless we have tried to keep sophisticated

mathematics to a minimum: nothing more than freshman calculus is needed for

most of the book, and a good part of the book requires only high school algebra.

Some familiarity with differential equations would be useful in certain sections.

While the different sections have various levels of difficulty, the book does not need

to be read in a linear fashion. It is quite feasible to browse through this book, as

most of the chapters and many of the sections are relatively self-contained. Sections

and subsections that are a bit more technical and that can easily be omitted on a

first reading include 1.1, 2.5, 3.2.2, 3.2.5, 4.3, 5.7, 6.2 to 6.6, 7.7 and 8.8. These

are marked in the text with an asterisk.

The gold standards on the topic of our book are The Variational Principles

of Mechanics by Cornelius Lanczos and Variational Principles in Dynamics and

1

www.cambridge.org/9780521869027
www.cambridge.org


Cambridge University Press
978-0-521-86902-7 — The Principle of Least Action
Alberto Rojo , Anthony Bloch 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

Quantum Theory by Wolfgang Yourgrau and Stanley Mandelstam. Our book can

be regarded as a supplement to these two masterpieces, with expositions that follow

the historical development of minimum principles, some elementary examples, an

invitation to read the primary sources, and to appreciate science, in the words of

Isidor Isaac Rabi, as a “human endeavor in its historic context, . . . as an intellectual

pursuit rather than as a body of tricks.”

The metaphysical roots of the least action principle are in Aristotle’s statement

from De caelo and Politics: “Nature does nothing in vain.” If there is a purpose in

Nature, she should follow a minimum path. At least that is the notion pursued by

Hero of Alexandria in the first century AD to deduce the law of reflection: light

follows the path that minimizes the travel time. Later, in 1657, Pierre de Fermat

extended this idea to the refraction of light rays. “There is nothing as probable or

apparent,” says Fermat, “as the assumption that Nature always acts by the easiest

means, which is to say either along the shortest lines when time is not a considera-

tion, or in any case by the shortest time.” The Arabic astronomer, Ibn al-Haytham,

also uses the principle of “the simplest way” to explain refraction. Galileo, in pos-

tulating the uniform acceleration of freely falling bodies, in 1638, also echoes

Aristotle: “we have been led by the hand to the investigation of naturally acceler-

ated motion by consideration of the custom and procedure of Nature herself in all

her other works, in the performance of which she habitually employs the first, sim-

plest, and easiest means.” In 1746, Pierre Louis Moreau de Maupertuis postulated

the principle of least action. His proposal, based on metaphysical and religious

views, reflected his adherence to notions of simplicity that had guided Fermat and

Galileo: “Nature, in the production of its effects,” he wrote, “does so always by the

simplest means.” More specifically: “in Nature, the amount of action (la quantité

d’action) necessary for change is the smallest possible. Action is the product of the

mass of a body times its velocity times the distance it moves.” His formulation was

vague, but, in the hands of Leonard Euler, it later became a well-formulated prin-

ciple. Gottfried Leibniz used similar (but not identical) ideas to study refraction of

light. Leibniz’s idea is of a “most determined” path and this reflects “God’s inten-

tions to create the best of all possible worlds.” “This principle of Nature,” he says

in his Tentamen Anagogicum, “is purely architectonic,” and then he adds: “Assume

the case that Nature were obliged in general to construct a triangle and that, for this

purpose, only the perimeter or the sum were given and nothing else; then Nature

would construct an equilateral triangle.”

The formulation of mechanics in terms of minimum principles originates in the

optical mechanical analogy first used by John Bernoulli to solve the “brachis-

tochrone problem:” what path between two fixed points in a vertical plane does

a particle follow in order to minimize the time taken? Bernoulli maps the prob-

lem to that of a light ray refracting in a medium of varying index of refraction,
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where light follows the path of least time. The mapping between mechanics and

optics becomes an isomorphism with Maupertuis’s formulation. The minimization

of action for a particle and the minimization of time for a light ray become the

same mathematical problem provided the index of refraction is identified with the

momentum of the particle: the paths are isomorphic. The principle of least action

then may be viewed as an alternative and equivalent formulation to Newton’s laws

of motion.

In the Age of Enlightenment, Newton’s ideas were extended to incorporate con-

straints in mechanical systems. The key figures are James Bernoulli, Jean le Rond

d’Alembert, and Joseph-Louis Lagrange. The central concept for these develop-

ments is the principle of virtual work, which establishes the conditions of static

equilibrium and its extension to dynamics. The work of Lagrange, starting in 1760,

is of supreme importance. For a constrained system with r degrees of freedom

(for example, a particle constrained to move on the surface of a sphere has r = 2

since at a given position it can move in only two directions), he is able to express

the dynamics in terms of a single function L (the Lagrangian) through r equa-

tions identical in structure. Lagrange’s equations can be derived from a minimum

principle, giving rise to an expanded version of the principle of least action: Mau-

pertuis’s minimum principle gives the path between two points in space for a fixed

value of the energy, while Lagrange’s integral gives the path that takes a given

time t between two fixed points in space. Lagrange’s ideas were extended, start-

ing in the 1820s, by William Rowan Hamilton (and also by Carl Jacobi). Hamilton

and Jacobi put the optical mechanical analogy in a broader conceptual frame: the

end points of paths that emanate from a given origin at t = 0 (each path being a

minimum of the Lagrangian action) create, at a later time t , a “wave-front” that

propagates. This wave-front is a surface that intersects the particle trajectories (just

like a wave-front for light is perpendicular to the light rays) but does not include

interference or diffraction effects peculiar to waves. However, it invites a “natu-

ral” question: if light rays are the small wavelength limit of wave optics, what is

the wave theory of particles whose small wavelength limit gives the particle tra-

jectories? Hamilton did not have an experimental reason to entertain the question

in the mid-nineteenth century, but the answer came in the 1920s with Louis de

Broglie’s and Erwin Schrödinger’s quantum theory of wave mechanics. In 1923

de Broglie wrote: “Dynamics must undergo the same evolution that optics has

undergone when undulations took the place of purely geometrical optics,” and in

1926 Schrödinger considered the “general correspondence which exists between

the Hamilton-Jacobi differential equation and the ‘allied’ wave equation.” In 1942

Richard Feynman established an even deeper connection between least action and

quantum physics: a quantum particle, in propagating between two fixed points in

space and time, does not follow a single path but all possible paths “at the same
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4 Introduction

time.” The contribution of each path to the total propagation is the (complex)

exponential of Hamilton’s action.

The fact that many fundamental laws of physics can be expressed in terms of

the least action principle (with the appropriate action) led Max Planck to say that,

“Among the more or less general laws which manifest the achievements of physical

science in the course of the last centuries, the principle of least action is probably

the one which, as regards form and content, may claim to come nearest to that

final ideal goal of theoretical research.” And Arthur Eddington, in 1920, wrote:

“the law of gravitation, the laws of mechanics, and the laws of electromagnetic

fields have all been summed up in a principle of least action. . . . Action is one

of the two terms in pre-relativity physics which survive unmodified in a descrip-

tion of the absolute world. The only other survival is entropy.” Although Einstein

didn’t follow a least action approach in his theories of relativity (special and gen-

eral), Max Planck, in 1907, in the first relativity paper not written by Einstein,

formulated the dynamics of the special theory in terms of the least action principle.

One of the most interesting applications of the least action principle is the deriva-

tion, by David Hilbert, of the field equations of general relativity. Hilbert knew,

from Einstein, that the relativistic theory of gravitation had to involve the curva-

ture of a four-dimensional space-time. Einstein had struggled for eight years and

he had eventually arrived at the solution by analyzing the properties of the field

equations themselves. Hilbert followed the approach of the least action principle,

guessed the “most natural” Lagrangian and, in 1915, derived the field equations

before Einstein.

Our purpose in writing this book is to tell the above stories with some math-

ematical rigor while staying as close as possible to the sources. Chapter 2 visits

some ancient incarnations of minimum principles before moving on to Galileo’s

curve of swiftest descent and Fermat’s precalculus ideas. We also include New-

ton’s calculation of the solid of least resistance, which anticipates the calculus of

variations used in the principle of least action. In chapter 3 we take an excursion

to Newton’s Principia, even though this work is not directly related to variational

principles. We do so for two reasons: the monumental importance of this work on

mechanics, and the fact that Newton’s ideas are crucial in the development of the

principle of least action. Chapter 4 tells the story of the optical mechanical analogy

and the true beginnings of variational principles. In chapter 5 we visit the principle

of virtual work and Lagrange’s equations. Here we point out that the principle of

least action fails to give the dynamics of nonholonomic systems, where the con-

straints are expressed in terms of the possible motions rather than in terms of the

possible configurations. Chapter 5 and the ones that follow require familiarity with

calculus. In writing chapter 6, we decided to follow Hamilton’s crucial papers as

closely as possible, making some sections of this chapter perhaps less accessible
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than the material found in previous chapters. We included a discussion on kinetic

foci, which emphasizes the fact that the principle of least action should perhaps be

called the principle of extremal (or critical) action since action is not always least.

For classical (non-quantum) systems, the action is an extremum that can never be

a maximum; that leaves us with a minimum or a saddle point, and both are possi-

ble. Chapter 7 is an overview of relativity in connection with least action. Finally,

in Chapter 8 we narrate the development of quantum theory and, in particular, we

trace its connection with the optical mechanical analogy and the principle of least

action.
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Prehistory of Variational Principles

2.1 Queen Dido and the Isoperimetric Problem

Consider a loop of thread lying on a table. How can we distort the loop, without

stretching the thread, so that it encloses the maximum area?

The problem appears in a story told by the Roman poet, Virgil, in his epic poem,

The Aeneid (Virgil, 19 BC):

They sailed to the place where today you’ll see

Stone walls going higher and the citadel

Of Carthage, the new town. They bought the land,

Called Drumskin [Byrsa] from the bargain made, a tract

They could enclose with one bull’s hide.

These verses refer to the legend of Queen Dido who fled her home because her

brother, Pygmalion, had killed her husband and was plotting to steal all her money.

She ended up on the north coast of Africa, where she was given permission to rule

over whatever area of land she was able to enclose using the hide of only one bull.

She cut the hide into thin strips, tying them together to form the longest loop she

could make, in order to enclose the largest possible kingdom. Queen Dido seems to

have discovered how to use this loop to maximize the area of her kingdom: using

straight coastline as her side border, she enclosed the largest area of land possible

by placing the loop in the shape of a semi-circle.

Queen Dido’s story is now the emblem of the so-called isoperimetric problem:

for a fixed perimeter, determine the shape of the closed, planar curve that encloses

the maximum area. The answer is the circle. Aristotle, in De caelo, while dis-

cussing the motion of the heavens, displays some knowledge or intuition of this

result (Aristotle, 350 BC/1922, Book II):

Again, if the motion of the heavens is the measure of all movement . . . and the minimum

movement is the swiftest, then, clearly, the movement of the heavens must be the swiftest

of all movements. Now of the lines which return upon themselves the line which bounds

the circle is the shortest; and that movement is the swiftest which follows the shortest line.
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2.1 Queen Dido and the Isoperimetric Problem 7

However, a common assumption in ancient times was that the area of a figure is

determined entirely by its perimeter (Gandz, 1940). For example, Thucydides, the

great ancient historian, estimated the size of Sicily from its circumnavigation time

which is proportional to the perimeter (Thucydides, 431 BC, Book VI):

For the voyage round Sicily in a merchantman is not far short of eight days; and yet, large

as the island is, there are only two miles of sea to prevent its being mainland.

The confusion persisted even up to the times of Galileo, who expresses the

problem in Sagredo’s voice (Galilei, 1638/1974, p. 61):

people who lack knowledge of geometry . . . make the error when speaking of surfaces; for

in determining the size of different cities, they often imagine that everything is known when

the lengths [quantità] of the city boundaries are given, not knowing that one boundary

might be equal to another, while the area contained by one be much greater than that in the

other.

The isoperimetric problem was solved by the Greek mathematician Zenodorus

(ca. 200 BC– ca. 140 BC). Although his work has been lost, we know of his proof

through Pappus and Theon of Alexandria (Pappus, 1888; Heath, 1921). Zenodorus

starts by shaping Queen Dido’s loop into straight lines of different lengths to form

an arbitrary irregular polygon. And then he shows that one can increase the area

enclosed by that polygon by changing the lengths of the sides – without altering its

perimeter or the number of sides – until they are all the same. In other words, he

shows that, of all polygons of a given perimeter and a given number of sides, the

equilateral polygon encloses the largest area. However, even if we fix the perimeter

and the number of sides, there are still an infinite number of possible equilateral

polygons. Zenodorus shows that, from this infinite set of equilaterals, the equian-

gular one encloses the largest area. And for the final piece of the proof: if we start

with a regular polygon and increase its number of sides (keeping the perimeter

fixed), the new polygon encloses a larger area. And this leads us naturally to the

circle, which we can think of as a regular polygon with an infinite number of sides.

The reader who is not interested in the details of Zenodorus’s proof can skip the

next section without loss of continuity.

2.1.1 Zenodorus’s Solution*

Zenodorus showed that a non-equilateral polygon can be manipulated to enclose

a larger area without changing its perimeter. Pick a triangle of the irregular poly-

gon – the shaded triangle of Figure 2.1. Keeping the base AB fixed, reshape the

triangle into an isosceles triangle of the same perimeter by moving the vertex from
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8 Prehistory of Variational Principles

C

A B

D

Figure 2.1 Adapted from Zenodorus. The equilateral polygon encloses a larger
area than any irregular polygon with the same perimeter and the same number of
sides.
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Figure 2.2 From Zenodorus. Among the triangles on a fixed base AB and fixed
perimeter AB + a + b, the isosceles triangle ADB has the largest area. Triangle
ADB, whose legs have length (a + b)/2, has the same perimeter as the starting
(scalene) triangle AC B. Prolong AC to F so that AD = DF . The dashed line
DE , parallel to AB, is a “line of symmetry:” the segment DB is the reflection
of DF on the “mirror” DE , and all points below the line DE are closer to B
than to F . Now consider the triangle AC F and use the “triangular inequality”
(in any triangle the sum of any two sides is greater than the remaining side):
C F + a > a + b and the segment C F > b. Point C is therefore below C E ; the
height of the triangle AC B is therefore smaller than the height of ADB. Since
both triangles have the same base, ADB has larger area.

C to D. Zenodorus shows that this reshaping increases the area. The specifics of the

proof (see Figure 2.2) draw from the repertoire of “conjuring tricks” of the Greek

geometers – the choreography of auxiliary lines and symmetric angles that reveal

sometimes unexpected and paradoxical relations. The process can be repeated for

all triangles of consecutive vertices of the polygon, allowing one to conclude that

the polygon enclosing the largest area is equilateral.

The second step is to show that the maximum polygon is also equiangular. This

Zenodorus proves by considering two consecutive triangles from the polygon (see

Figure 2.3). Zenodorus proves that, given two non-similar isosceles triangles, if we

construct, on the same bases, two similar triangles with the same total perimeter as

the first two triangles, then the sum of the areas of the similar triangles is greater
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2.1 Queen Dido and the Isoperimetric Problem 9

Figure 2.3 Adapted from Zenodorus. The area of a polygon can be increased by
making it equiangular.

A
EC

D

h
1

h
1

a

B

a

a a h
2

b
2

b
1

h
′

2

h
′

1

b
1 

+ b
2

B̄

B̄
′

D
′

a a

Figure 2.4 Adapted from Zenodorus. The sum of the areas of two isosceles trian-
gles with different bases AC = 2b1 and C E = 2b2, but otherwise equal sides a,
is smaller than the sum of the areas of two similar triangles with the same bases
and equal total perimeter.

than the sum of the areas of the non-similar triangles. According to the account

by Heath (1921), Zenodorus’s proof is restricted. But we can show that a slight

modification makes it valid in general.

Let us start with the non-similar isosceles triangles ABC and C DE (see Fig-

ure 2.4). Their bases are AC = 2b1 and C E = 2b2 respectively, their heights are

h1 and h2, and all the legs are of length a. Following Zenodorus’s logic, construct

the triangle AB̄C , which is the “mirror” image of triangle ABC , the mirror being

along the line of the common bases.

Now construct the two similar triangles AB̄ ′C and C D̄′E with new heights h′
1

and h′
2, keeping the total perimeter the same:

B ′ D′ = 2a. (2.1)

Since the original triangles are not similar, the line B̄ D joining their vertices is

shorter than 2a.1

B̄ D < 2a. (2.2)

1 This is due to the triangular inequality; the side B̄ D is smaller than the sum of BC and C D.
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10 Prehistory of Variational Principles

Using the Pythagorean theorem

(B̄ ′ D′)2 = (b1 + b2)
2 + (h′

1 + h′
2)

2

> (B̄ D)2

= (b1 + b2)
2 + (h1 + h2)

2, (2.3)

and

(h′
1 + h′

2) > (h1 + h2). (2.4)

This relation between the final and the initial heights is general and was obtained

by Zenodorus. All we need for equation (2.4) to be valid is that B
′
D′ > B D, and

this inequality holds even for isosceles triangles of unequal legs (BC �= C D).

In a slight deviation from the proof reproduced by Heath, consider the total

change in area for the triangles,

�A = b1(h
′
1 − h1) + b2(h

′
2 − h2). (2.5)

Now take the larger of the bases (b1 in our case) and replace it by the smaller one

in equation (2.5) to obtain

�A > b2(h
′
1 − h1) + b2(h

′
2 − h2)

= b2(h
′
1 + h′

2 − h′
1 − h′

2)

> 0. (2.6)

The sum of the areas of two isosceles triangles is always increased if they are

made similar (keeping the sum of the perimeters and the bases fixed): the shaded

“hollow-angled (figure)” (κoιλoγ ώνιoν) AB̄ ′C B̄ is larger than the figure C DE D′.

This does not mean that the maximum possible area is attained by making them

similar.2 All we have shown is that the area increases. Zenodorus proved that the

largest polygon of a given number of sides is regular. The underlying argument

used here is “one of a mathematician’s finest weapons” (Hardy, 1967, p. 94), reduc-

tio ad absurdum, where an assertion is established by deriving an absurdity from

its denial. We first assume that there exists a polygon of maximum area, but we

find a way to make it even larger (by making it equilateral). We then assume that,

from the set of equilateral polygons, we choose the one of maximum area. But we

then show that making it equiangular makes it larger still. Thus we show that the

only equilateral that cannot be further enlarged is the equiangular one. The proof

“shuts all doors one after another, and leaves open only one, through which merely

for that reason we must now pass” (Schopenhauer, 1969, p. 70). There is one more

door to shut before we get to the circle: the proof that the area of a regular polygon

is increased if we increase the number of sides (always for fixed perimeter).

2 The maximum area, as can be proven using elementary calculus and also by a geometric method due to
Steiner, is attained when sin ∠BC A/ sin ∠DC E = b1/b2.
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