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A short review of standard and
inflationary cosmology

In this chapter we will recall some basic notions of standard and inflationary
cosmology that will be used later, in a string cosmology context. We will assume
that the reader is already familiar with the geometric formalism of the theory of
general relativity, and with the main observational aspects of large-scale astro-
nomy and astrophysics. We will discuss, in particular, the various assumptions
of the so-called standard cosmological model, the problems associated with its
initial conditions, and the basic aspects of its “inflationary” completion driven by
the potential energy of a cosmic scalar field (further details on the inflationary
scenario will be supplied in Chapter 8). This presentation aims at a self-contained
study of the early cosmological dynamics: for a more detailed introduction, and
a deeper analysis of the topics discussed in this chapter, we refer the interested
reader to [1, 2, 3] for the standard cosmological model, and to [4, 5, 6] for the
inflationary scenario.

1.1 The standard cosmological model

The standard cosmological model, developed during the second half of the last
century, was inspired by two fundamental observational results: the recession of
galaxies, discovered by Hubble [7], and the presence of the Cosmic Microwave
Background (CMB), discovered by Penzias and Wilson [8]. The model relies
upon a number of hypotheses – also motivated by direct and indirect observations
– that we now list, with some illustrative discussion.

1.1.1 Einstein equations

The first assumption is that the gravitational interaction, on cosmological scales
of distance, is well described by the classical theory of general relativity,
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2 A short review of standard and inflationary cosmology

and in particular by the equations derived from the effective four-dimensional
action

S =− 1
16� G

∫
d4x

√−gR+S�+
∫

d4x
√−g�m� (1.1)

Here S� is the Gibbons–Hawking boundary term [9], required in order to repro-
duce the standard Einstein equations, and �m is the Lagrangian density of the
matter fields, acting as gravitational sources. The variation of the action (1.1) with
respect to the metric g�� yields (see Chapter 2 for an explicit derivation)

G�� ≡ R��−
1
2
g��R= 8�GT��� (1.2)

where G�� is the so-called Einstein tensor, and T�� is the (dynamical) energy-
momentum tensor of the matter sources, defined by the variation (or functional
differentiation) of the matter action as

�g �
√−g�m�=

1
2
√−g T�� �g��� (1.3)

The right-hand side of Eq. (1.2) represents all the sources gravitationally coupled
to the metric, and therefore includes the possible contribution of the vacuum
energy density associated with a cosmological constant �, and described by the
effective energy-momentum tensor T�� =�g��.

1.1.2 Homogeneity and isotropy

A second assumption is that the spatial sections of the Universe, on large
enough scales of distance, can be described as homogeneous and isotropic (three-
dimensional) Riemann manifolds, geometrically represented by maximally sym-
metric spaces where rotations and translations form a six-parameter isometry
group.

It may be noted that, on scales much smaller than the Hubble radius H−1
0 �

0�9h−1× 1028 cm, the distribution of visible matter seems to follow a “fractal”
distribution (see for instance [10]), and that it is not very clear, at present, at
which scale the (averaged) matter distribution becomes really homogeneous and
isotropic. The hypothesis of homogeneity and isotropy refers, however, to the
full set of cosmic gravitational sources (including, as we shall see, radiation, dark
matter, dark energy, � � �), and is quite powerful, since it allows a simplified cosmo-
logical description in which the space-time geometry can be parametrized by the
so-called “comoving” chart (or set of coordinates). In that case, the fundamental
space-time interval reduces to

ds2 = b2�t�dt2−a2�t�d�2��r� � (1.4)
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1.1 The standard cosmological model 3

where a�t�� b�t� are generic functions of the time coordinate, and d�2 is the line-
element of a three-dimensional space with constant (positive, negative or zero)
curvature K. Using a set of stereographic coordinates �x1� x2� x3�, the metric of
such a maximally symmetric space can be parametrized as [1]

d�2 = dxi dx
i+K �xi dx

i�2

1−Kxixi
� (1.5)

where scalar products are performed with the Euclidean metric �ij .
An important property of the comoving chart is the fact that static observers,

with four-velocity u� = �u0� �0�, are also geodesic observers. The normalization
condition g��u

�u� = 1, with the metric (1.4), gives indeed u0 = b−1�t� and

du0

d�
=− ḃ

b3
� �00

0�u0�2 = ḃ

b3
� (1.6)

which implies that the field u0 satisfies the geodesic equation

du0

d�
+�000�u0�2 = 0� (1.7)

Here � is the proper time (related to the coordinate time t by d� = √
g00dt =

b�t�dt), and the dot denotes differentiation with respect to t. In addition, if ui = 0,
then

dui

d�
=−�i00�u0�2 =− 1

2b2
gij

(
2
0gj0− 
jg00

)≡ 0� (1.8)

Thus, in the absence of non-gravitational forces, static observers are always at rest
with respect to comoving coordinates, even if the geometry is time dependent.

The existence of such observers provides a natural reference frame for syn-
chronizing clocks, and suggests the use of a convenient time coordinate, the
so-called cosmic time, which corresponds to the proper time of the static observ-
ers. The choice of this time coordinate leads to the synchronous gauge, defined
by the condition g00 = 1. It is also convenient to parametrize the maximally
symmetric space of Eq. (1.5) with spherical coordinates �r� ����. By setting
x1 = r sin � cos�, x2 = r sin � sin�, x3 = r cos�, and differentiating to compute
d�2, in the synchronous gauge of the comoving chart, one finally arrives at the
well-known Robertson–Walker metric, defined by

ds2 = dt2−a2�t�
[

dr2

1−Kr2 + r
2�d�2+ sin2 � d�2�

]
� (1.9)

Here t is the cosmic-time coordinate, and the constant K (with dimensions L−2)
controls the intrinsic curvature of the space-like t= const hypersurfaces, represent-
ing three-dimensional sections of the space-time manifold. With our conventions
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4 A short review of standard and inflationary cosmology

the function a�t�, called the “scale factor”, is dimensionless, while the comoving
radial coordinate r has conventional dimensions of length.

Another choice of time coordinate (often used in this book) is the so-called
conformal gauge, defined by the condition g00 = a2. The time parameter of this
gauge, usually denoted by �, is thus related to the cosmic time t by dt = ad�.
The choice of the conformal gauge is particularly convenient for spatially flat
manifolds (K = 0), whose metric can then be written in conformally flat form,
using cartesian coordinates, as

ds2 = a2��� (d�2−dxi dx
i
)
� (1.10)

A space-time described by the Robertson–Walker metric is characterized by a
number of interesting kinematical properties concerning the motion of test bodies
and the propagation of signals (see for instance [1]). For the purposes of this book
it will be enough to recall two effects.

The first effect concerns the spectral shift of a periodic signal, a shift originating
from the well-known temporal slow-down produced by gravity. Indeed, at any
given time t, all points of the three-dimensional spatial sections at constant
curvature will be affected by exactly the same gravitational field, so that any local
process will be equally slowed-down with respect to the same process occurring
in the flat Minkowski space, quite independently of its spatial position. However,
if the scale factor a�t� varies with time, then the curvature radius of the spatial
sections (and the associated intensity of the local effective gravitational field) will
also vary with time. This will produce a difference in the local gravitational field
(and in the local “slow-down”) between the time tem of emission of a periodic
signal of pulsation �em, and the time tobs > tem when the same signal is observed
with pulsation �obs. The ratio of the two pulsations will be clearly proportional
to the ratio of the local gravitational intensities at tem and tobs, and thus inversely
proportional to the spatial curvature radius.

For a more precise computation of the spectral shift �em/�obs we may consider
a photon of four-momentum p�, traveling along a null geodesic of a spatially
flat Robertson–Walker metric. In the cosmic-time gauge such a null path has
differential equation dt= âni dxi, where n̂ is a unit vector (�̂n� = 1) specifying the
photon direction; the null photon momentum is, in this gauge, p� = p0�1� n̂ i/a�,
with g��p

�p� = 0. The momentum is parallelly transported along the geodesic,
and for the energy p0 we have, in particular,

dp0 =−��	0 dx�p	 = �0ij dxipj

=−ȧp0n̂i dxi =− ȧ
a
p0 dt� (1.11)
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1.1 The standard cosmological model 5

The integration gives p0 = �/a�t�, where the integration constant � represents
the proper frequency of the photon in the Minkowski space locally tangent to the
given cosmological manifold.

The local frequency measured by a static, comoving observer u� is thus time
dependent, being determined by the projection p�u� =�/a�t�. A photon emitted
at t = tem and received at t = tobs, even in the absence of a (possible) Doppler
effect due to the relative motion of source and emitter, will be characterized by
the spectral shift

�em

�obs
= �p�u��em

�p�u��obs
= aobs
aem

(1.12)

(see also Eqs. (8.172)–(8.173), and the discussion of Section 8.2). If the Uni-
verse is expanding, then aobs > aem for tobs > tem, and the Robertson–Walker
metric produces an effective redshift of the signals received from distant sources,
i.e. �obs < �em. In particular, since observations are carried out at the present
time, tobs = t0, it may be useful to introduce a redshift parameter z�t� defined as

1+ z�t�= a�t0�
a�t�

≡ a0
a�t�

� (1.13)

which controls the relative “stretching” of the wavelengths of the received radi-
ation,

z= ��
�

= �obs−�em
�em

� (1.14)

A second important feature of the Robertson–Walker kinematics, which we
recall here for later applications, is the possible existence of “horizons”, i.e. of
surfaces with relevant causal properties. For any given observer we may consider,
in particular, the particle horizon, which divides the portion of space-time already
observed from the one yet to be observed, and the event horizon, which divides the
observable portion of space-time from the one causally disconnected [11]. For their
precise definition we must refer to the limiting times tm and tM corresponding,
respectively, to the maximum past extension and future extension of the time
coordinate on the given cosmological manifold.

Let us consider a signal propagating towards the origin along a null radial
geodesic of the metric (1.9) (ds2 = 0, d� = 0 = d�), satisfying the equation
dt/a = dr/

√
1−Kr2, and received by a comoving observer at rest at the origin

of the polar coordinate system. A signal emitted from a radial position r = r1, at
a time t = t1, will be received at r = 0 at a time t = t0 > t1, such that∫ r1

0

dr√
1−Kr2 =

∫ t0
t1

dt
a�t�

� (1.15)
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6 A short review of standard and inflationary cosmology

The considered signal was emitted at a proper distance d�t� from the origin which,
at time t0, is determined by

d�t0�= a�t0�
∫ r1
0

dr√
1−Kr2 = a�t0�

∫ t0
t1

dt
a�t�

� (1.16)

In the limit t1 → tm we then define the “particle horizon”, for the given observer
at time t0, as the spherical surface centered at the origin r = 0 with proper radius

dp�t0�= a�t0�
∫ t0
tm

dt
a�t�

� (1.17)

This surface encloses the maximal portion of space physically accessible to direct
observation from the origin of the coordinate system at the time t0. Points located
at a proper spatial distance d > dp�t0� cannot be causally connected with the
given observer at the given time t0 (they may become causally connected at later
times, at least in principle).

Consider now a radial signal emitted towards the origin at time t0, from a point
located at a comoving position r2, and received at the origin at a time t2 > t0.
The proper distance of the emitter from the origin, at time t0, is then

d�t0�= a�t0�
∫ r2
0

dr√
1−Kr2 = a�t0�

∫ t2
t0

dt
a�t�

� (1.18)

In the limit t2 → tM we can then define the “event horizon”, at the time t0, as
the spherical surface centered at the origin with proper radius

de�t0�= a�t0�
∫ tM
t0

dt
a�t�

� (1.19)

Signals emitted from points located at a proper distance d > de�t0� will never be
able to reach the origin. In other words, points with spatial separations d > de
will never become causally connected, even extending the time coordinate to the
extremal future limit allowed by the given cosmological manifold.

The above horizons exist if the integrals of Eqs. (1.17) and (1.19) are con-
vergent, of course. Consider, for instance, a cosmological solution describing a
Universe expanding for ever from an initial singularity, and parametrized in cos-
mic time by the power-law scale factor a�t� = t�, with � > 0, and 0 ≤ t ≤ 
:
it can be easily checked that the particle horizon exists if 0 < � < 1, while the
event horizon exists if �> 1. For �= 1 neither the particle horizon nor the event
horizon exists. The definitions of horizon given here will be used in the follow-
ing chapters, and will be applied in particular in Section 5.3 to illustrate some
important differences between standard and string cosmology models of inflation.
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1.1 The standard cosmological model 7

1.1.3 Perfect fluid sources

A third assumption (or set of assumptions) of the standard cosmological
model refers to the gravitational sources that we need to specify in order to
solve the Einsten equations. According to the standard model the sources of
the cosmological gravitational field on large scales, after averaging over pos-
sible spatial fluctuations, can be represented as a barotropic, perfect fluid with
energy-momentum tensor

T�� = ��+p�u�u�−p���� (1.20)

where the energy density � and pressure p depend only on time, and are related
by the equation of state

p

�
= � = const� (1.21)

In addition, the fluid is assumed to be at rest in the comoving frame. Thus, in
the synchronous gauge, u� = �1� �0� and T�� becomes diagonal,

T 0
0 = ��t�� T

j
i =−p�t��ji � (1.22)

With the given sources we are now able to write explicitly the Einstein equations
(1.2), using the following (more convenient, but equivalent) form:

R�� = 8�G
(
T��−

1
2
T���

)
� (1.23)

For the Robertson–Walker metric (1.9) the non-zero components of the Ricci
tensor, in mixed form, depend only on time, and are given by

R1
1 = R2

2 = R3
3 =− ä

a
−2

(
H2+ K

a2

)
�

R0
0 =−3

ä

a
�

(1.24)

where H = ȧ/a (the dot indicates the derivative with respect to cosmic time).
The time and spatial components of Eqs. (1.23) then provide, respectively, the
following independent equations:

ä

a
=−4�G

3
��+3p� �

ä

a
+2

(
H2+ K

a2

)
= 4�G��−p��

(1.25)

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86875-4 - Elements of String Cosmology
Maurizio Gasperini
Excerpt
More information

http://www.cambridge.org/0521868750
http://www.cambridge.org
http://www.cambridge.org


8 A short review of standard and inflationary cosmology

Combining them in order to eliminate ä/a, and differentiating the energy density
� with respect to time, leads to the system of first-order differential equations:

H2+ K
a2

= 8�G
3
� � (1.26)

�̇+3H��+p�= 0 � (1.27)

The last equation can also be directly obtained from the covariant conservation of
the energy-momentum tensor, � T

�
� = 0, which is a consequence of the contracted

Bianchi identity � G
�
� = 0 (see Eq. (1.2)).

In order to solve the above system of equations for the three unknown functions
a�t�, ��t�, p�t�, it is necessary to use the equation of state p= p���, which in our
case corresponds to the barotropic condition (1.21). In general, the gravitational
sources of the standard cosmological model can be represented as a mixture of
barotropic perfect fluids,

�=∑
n

�n� p=∑
n

pn� pn = �n�n� (1.28)

with no energy transfer between the different fluid components, so that the
energy-momentum tensor of each fluid is separately conserved. Equation (1.27)
then yields, for each component,

�n�t�= �n�t0�
(
a

a0

)−3�1+�n�
� (1.29)

where �n�t0� is an integration constant. Since the energy density of the different
components has a different time behavior, the evolution of the Universe will then
be characterized by different phases, each of them dominated by different fluid
components.

In each cosmological phase the time evolution of the scale factor can be
obtained by substituting Eq. (1.29) into (1.26), and solving the corresponding
differential equation for a�t�. If, in particular, we are interested in the very early
time evolution we can neglect the spatial curvature term (see below), and we
obtain the scale factor

an�t�=
(
t

t0

)2/3�1+�n�
� �n �= −1� (1.30)

where t0 is an integration constant. The case �n = −1 corresponds to the
energy-momentum tensor of a cosmological constant

T�� =����� (1.31)
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1.1 The standard cosmological model 9

which describes an effective fluid with equation of state pn =−�n =−�= const
(see Eq. (1.22)). In this case Eq. (1.29) is still valid, and the integration of
Eq. (1.26) (with K = 0) gives the exponential solution

an�t�= exp�H�t− t0��� H =
(
8�G�

3

)1/2

= const� (1.32)

The standard cosmological model, in its original formulation [1], assumes that
the cosmic fluid consists of two fundamental components: incoherent matter (�m)
with zero pressure pm = 0, and radiation (�r ) with pressure pr = �r/3. The
radiation component of the cosmic fluid represents the contribution of all massless
(or very light) relativistic particles (photons, gravitons, neutrinos, � � �), while the
pressureless matter component takes into account the large-scale contribution
of the macroscopic gravitational sources (galaxies, clusters, interstellar gas, � � �),
and the contribution of cosmic backgrounds of heavy, non-relativistic particles
(baryons, as well as other, more exotic, possible dark-matter components). As
we shall see later in more detail (see Eq. (1.39)), the present energy density of
incoherent matter is roughly of the same order of magnitude as the critical density,
�m�t0�∼ �c�t0�, where [12]

�c�t0�=
3H2

0

8�G
= 3H2

0M
2
P � 2�25h2×10−120M4

P� (1.33)

and is thus much greater than the radiation energy density today, since [12]

�r�t0�� 4�15h−2×10−5�c�t0�� (1.34)

Therefore, according to the standard cosmological model, the present scale factor
(assuming negligible spatial curvature) should evolve in time as a�t�∼ t2/3.

As the Universe expands, however, the energy density of the matter component
decreases in time as the inverse of the proper volume, �m ∼ a−3, i.e. more slowly
than the radiation component, �r ∼ a−4 (see Eq. (1.29)). Going backwards in time
one thus necessarily reaches the so-called equality time, t = teq, characterized by
the same amount of matter and radiation energy density, �m�teq� = �r�teq�. At
earlier times, t < teq, the standard model then predicts the existence of a primordial
phase where the radiation is the dominant component of the total energy density,
and the scale factor evolves with different kinematics, a�t� ∼ t1/2, according to
Eq. (1.30).

It is worth stressing that both the matter-dominated and the radiation-dominated
regimes, according to the standard model, correspond to a phase of expansion
which is decelerated and has decreasing curvature, i.e. satisfies

ȧ > 0 � ä < 0 � Ḣ < 0 � (1.35)
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10 A short review of standard and inflationary cosmology

as one can easily verify by differentiating Eq. (1.30) for � = 0 and � = 1/3 (with
a power-law scale factor, we can take H as a good indicator of the time behavior
of the space-time curvature scale). However, the recent large-scale observations
concerning both the Hubble diagram of Type Ia Supernovae [13, 14] and the
harmonic analysis of the CMB anisotropies [15, 16, 17] seem to indicate, with a
growing level of precision and confidence [18, 19, 20], that the present Universe
is undergoing a phase of accelerated expansion, ä > 0.

Such observations are thus compatible with the first of Eqs. (1.25) only if the
sources of cosmic gravity are presently dominated by a component with negative
enough pressure (i.e. �+3p < 0), so as to produce a kind of “cosmic repulsion”
on large scales. Adding explicitly this new source �q (dubbed “quintessence”, or
“dark energy”) to the usual dust matter sources �m, Eq. (1.26) becomes

H2+ K
a2

= 8�G
3
��m+�q� � (1.36)

where �q > �m, and pq/�q ≡ �q < −1/3. Dividing by H2 we can then obtain a
relation between the various components of the cosmic fluid in critical units, i.e.

1= m+ q+ K� (1.37)

where

 m = �m
�c
�  q =

�q

�c
�  K =− K

a2H2
� (1.38)

The simplest model of dark energy is a cosmological constant, �q =�= const
(which corresponds to �q =−1). In this case, replacing  q with  � =�/�c, the
results of present observations can be summarized as follows [12]:

 m = 0�24+0�03
−0�04�  � = 0�76+0�04

−0�06� (1.39)

These results refer to the particular case K = 0, but can be consistently applied
to the present cosmological state where the allowed deviations of  m+ � from
1 are very small: indeed,

 K =−0�015+0�020
−0�016 (1.40)

according to a recent combination of supernovae and CMB data [20].
The experimental results are not very different from those of Eq. (1.39) even if

�q does not correspond to a cosmological constant, but represents the contribution
of some weakly coupled, time-dependent field, as will be discussed in Section 9.3.
In such a case, the effective equation of state �q = pq/�q of the dark-energy
component is presently constrained by the limits

�q =−0�97+0�07
−0�09� (1.41)
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