
Introduction

Fragmentation and coagulation are two natural phenomena that can be
observed in many sciences, at a great variety of scales. To give just a
few examples, let us simply mention first for fragmentation, the studies
of stellar fragments in astrophysics, fractures and earthquakes in geophysics,
breaking of crystals in crystallography, degradation of large polymer chains in
chemistry, DNA fragmentation in biology, fission of atoms in nuclear physics,
fragmentation of a hard drive in computer science, � � � For coagulation, we
mention the formation of the large structures (galaxies) in the universe and
of planets by accretion in astrophysics, of polymer chains in chemistry, of
droplets of liquids in aerosols or clouds, coalescence of ancestral lineages in
genealogy of populations in genetics, � � �
The main purpose of this monograph is to develop mathematical models

which may be used in situations where either phenomenon occurs randomly
and repeatedly as time passes. For instance, in the case of fragmentation,
we can think of the evolution of blocks of mineral in a crusher. The text is
intended for readers having a solid background in probability theory.1 I aimed
at providing a rather concise and self-contained presentation of random frag-
mentation and coagulation processes; I endeavored to make accessible some
recent developments in this field, but did not try to be exhaustive. Each
chapter ends with a ‘Comments’ section in which some important aspects
that have not been discussed in the main part of the text (often because the
discussion would have been too technical and/or lengthy) are addressed and
precise references are given.

1 Preliminaries on classical properties of some fundamental stochastic processes (including
Markov chains in continuous time, Poisson random measures, � � � ) will be provided in the
text; however, the reader is expected to be already acquainted with basic notions in this area.
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2 Introduction

Let us first briefly discuss fragmentation. In order to deal with models
that can be studied mathematically, we are led to make hypotheses which
may look at first sight somewhat stringent, but that are however, commonly
assumed in applications. First, we suppose that the system has a memoryless
evolution, that is its future only depends on its present state and not on its
past. In particular, this excludes the possibility that an object might be more
fragile (i.e. more likely to split) due to former shocks. Second, we assume that
each fragment can be characterized by a real number that should be thought
of as its size. This stops us from considering the spatial position of a fragment
or further geometrical properties like its shape; physicists call such models
mean field. Finally, we shall always suppose that the evolution of a given
fragment does not depend on its environment, in the sense that fragments split
independently of each other, or in other words, that the branching property is
fulfilled.
Similarly, the coalescent processes that we shall consider here are particle

systems with a Markovian (i.e. memoryless) evolution, where particles are
characterized by their sizes. Roughly, the key assumption is that coagulations
occur at rates which only depend on the particles involved in the merging, and
not on the other particles in the system. Very loosely speaking, this hypothesis
plays a role similar to the branching property for fragmentation processes.
Naively, fragmentation and coagulation are dual notions, in the sense that

a simple time-reversal changes one into the other. However, due to the funda-
mental requirements we impose (these are needed to get notions that can be
investigated mathematically), this naive duality relation fails for the fragmen-
tation and coalescent processes that are considered in this text. This means
that in general, time-reversal does not transform a fragmentation process into a
coalescent process, and vice-versa.2 Therefore we will have to develop distinct
theories. However, they share similarities, not just because they deal with
random processes taking values in the same state space but more significantly
because the same techniques are often relevant to investigate both notions.
The plan of this text is as follows. In the first chapter, we develop the

theory of fragmentation chains, that is fragmentation processes in which each
fragment remains stable for some random time and then splits. We focus on
processes having a natural property of self-similarity. The heart of the study
lies in the underlying genealogical structure of the fragmentation chain as a
randomly marked tree, and the branching property. We investigate asymptotic
properties of the empirical measure of the fragments as time tends to infinity;

2 Nonetheless, there are a few striking and important examples in which the duality holds, that
will be emphasized in this text.
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Introduction 3

the so-called intrinsic martingale induced by the genealogical tree plays a
fundamental role in the study. When the index of self-similarity is negative,
we point at unexpected phenomena of extinction and formation of dust.
Plainly, this discrete approach does not enable us to consider situations

where splitting can occur continuously, that is when each fragment may split
immediately. We shall make a key step to solve this fundamental difficulty
in the second chapter. There, we will start by discussing various notions of
partitions, which provide natural frameworks for fragmentation and coales-
cent processes. One obvious notion is that of a partition of a unit mass, that
is a sequence of non-negative real numbers which add up to at most 1. An
important class of random mass-partitions can be constructed from Poisson
random measures, and we shall develop some material in this field, including
the classical Poisson-Dirichlet distributions and its two-parameter generaliza-
tion by Pitman and Yor. A probably less intuitive notion, which is due to
Kingman, is that of an exchangeable random partition of �, the set of natural
integers. Roughly, the latter arises by sampling points at random in the object
which splits, and provides a powerful technique of spatial discretization for
mass-partitions.
Exchangeable random partitions play a key role in Chapter 3 for the

construction and study of general self-similar fragmentation processes, in
which each fragment may split immediately. We shall characterize their
dynamics in terms of an erosion coefficient, a rate of sudden dislocation,
and the index of self-similarity. The evolution of a fragment containing a
point tagged at random can then be described in terms of some subordinator
(i.e. an increasing process with independent and stationary increments) whose
characteristics are expressed in terms of the erosion coefficient, the disloca-
tion rate, and the index of self-similarity. Statistical properties of the tagged
fragment yield extensions of results proved for fragmentation chains in the
first chapter to this more general setting.
Coalescent processes are considered in the last two chapters; we shall

focus on two quite different types of dynamics. The first are the so-called
exchangeable coalescents for which the rates of coagulation do not depend
on the masses in the system. In general, coagulations may occur simultane-
ously, and each coagulation may involve an arbitrary number of components.
The second type comprises the so-called stochastic coalescents, which are
often used as simple models for random coagulation in physics. There, only
binary coagulations are permitted, but now the rate of such a coagulation may
depend on the two fragments which are involved.
Exchangeable coalescents are studied in Chapter 4. We first introduce

the celebrated coalescent of Kingman (the essentially unique exchangeable
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4 Introduction

coalescent having only binary coagulations), which plays an important role
in the study of the genealogy of large populations. Then, we shall consider
general exchangeable coalescents, which have been introduced by Pitman,
Möhle, Sagitov and Schweinsberg. The analyses often rely on the same tech-
niques and ideas as those which have been used for homogeneous fragmen-
tations, even though time-reversing a homogeneous fragmentation does not
produce an exchangeable coalescent as one might expect naively. Finally, we
develop connections with certain stochastic flows, following a recent work
by Bertoin and Le Gall, and investigate the special case of the so-called
Bolthausen-Sznitman coalescent which was motivated by considerations in
statistical physics.
Finally, Chapter 5 is devoted to the stochastic coalescents of Marcus

and Lushnikov, and their asymptotics. We shall pay special attention to
the problem of the regularity of the transition probabilities as a function of
the initial conditions, following a beautiful approach due to Fournier. We
shall also develop the connection with Smoluchowski’s coagulation equa-
tions, by presenting some results about the hydrodynamic behavior of certain
stochastic coalescents. In this direction, we shall first investigate the multi-
plicative coalescent via its representation in terms of the Erdős-Rényi random
graph model, and then extend the analysis to sub-multiplicative kernels by
coupling. The ultimate section of this chapter will deal with the additive
kernel, focussing on remarkable connections with certain random structures
(random trees and forests) which have been developed by Pitman.
It should be already clear from the brief presentation above that this text

owes much to Jim Pitman. Many of his ideas, results and intuitions form
the cornerstones of this study. The reader is strongly encouraged to read his
superb Lecture Notes [186] for the St Flour summer school, which covers in
particular several topics treated here, sometimes from a different perspective.
Needless to say that my warmest thanks go to Jim.
Certain parts presented in this text result directly from collaborations.

I would like to express my deep gratitude to Sasha Gnedin, Christina
Goldschmidt, Jean-François Le Gall, Servet Martinez, Jim Pitman and Alain
Rouault. Working with them in this field has been not only enriching and
stimulating, but also very pleasant.
I also address special thanks to Anne-Laure Basdevant, Julien Berestycki,

Bénédicte Haas and Grégory Miermont, who have prepared their Ph.D. theses
on fragmentation and coalescent processes under my supervision. Some of
their results have a key role in this text. From a personal point of view, the
strong interest they had in this field, the questions they raised and the clever
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Introduction 5

ideas they developed, have been for me a major source of motivation and
support for carrying on this project.
Further, I would like to thank Maria-Emilia Caballero, Pablo Ferrari and

Servet Martinez, who offered me the opportunity of giving short courses on
fragmentation and coagulation. Earlier drafts of certain portions of this text
have been used as unpublished lecture notes corresponding to these courses.
Last but not least, this text has been written while I had a position at the

Institut universitaire de France; I would probably not have found time nor
energy for undertaking this project without the support of this institution.
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1
Self-similar fragmentation chains

Informally, imagine an object that falls apart randomly as time passes. The
state of the system at some given time consists in the sequence of the sizes
of the pieces, which are often called fragments or particles. Suppose that the
evolution is Markovian and obeys the following rules. First, different particles
evolve independently of each other, that is the so-called branching property
is fulfilled. Second, there is a parameter � ∈ �, which will be referred to
as the index of self-similarity, such that each fragment with size s is stable
during an exponential time with parameter proportional to s�. In other words,
a particle with size s > 0 has an exponential lifetime with mean cs−�, where
c > 0 is some constant. At its death, this particle splits and there results a
family of fragments, say with sizes �si� i ∈ ��, where the sequence of ratios
�si/s� i ∈ �� has the same distribution for all particles. The purpose of this
chapter is to construct such self-similar fragmentation chains, to shed light
on their genealogical structure, and to establish some of their fundamental
properties.

1.1 Construction of fragmentation chains

In this section, we briefly present some basic elements on Markov chains
and branching Markov chains in continuous time which are then used for
the construction and the study of fragmentation chains. For convenience, we
recall first some standard notation for sets of integers which will be used
through this text without further reference.
The sets of positive integers, and respectively of integers, are denoted by

�= �1�2� � � � � � �= �� � � �−1�0�1� � � � � �
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1.1 Construction of fragmentation chains 7

and then

�+ = �∪ �0�= �0�1�2� � � � �

designates the set of non-negative integers. When we shall need to consider
infinity as an extended integer, we shall use the notation

�= �∪ ��� � �+ = �+ ∪ ��� �

1.1.1 Preliminaries on Markov chains

Let �E�d� be a Polish space, that is a complete separable metric space, which
we also endow with its Borel sigma-field. Consider a collection �q�x� ·�� x∈E�

of finite measures on E which is (weakly) measurable in the variable x, in the
sense that for every Borel set B ⊆ E, the map x→ q�x�B� is measurable. It
is well-known that we can use the kernel �q�x� ·�� x ∈ E� as the jump rates of
some Markov chain in continuous time. Let us briefly recall the main steps
and refer, for example, to Norris [174] or Fristedt and Gray [109] for more
details.
For every x ∈ E, we write q�x� �= q�x�E� for the total mass of the measure

q�x� ·�, and we introduce the normalized probability measure on E given by

q̄�x� ·�= q�x� ·�/q�x�
with the convention that q̄�x� ·� = 	x is the Dirac point mass at x when
q�x�= 0. So �q̄�x� ·�� x ∈E� is a Markov kernel, that is a (weakly) measurable
family of probability measures on E. We can think of �q̄�x� ·�� x ∈ E� as the
transition probabilities of a Markov sequence1 Y = �Y�n��n ∈ �+�. That is,
for every n ∈ �+,

� �Y�n+1� ∈ · � Y�0�� � � � � Y�n��= q̄�Y�n�� ·� �
Next, we shall transform the Markov sequence Y into a Markov process

X = �X�t�� t ≥ 0� in continuous time which visits the same states as the

1 In the literature, Markov sequences are often called Markov chain in discrete time. However,
in order to avoid a possible confusion with Markov chains in continuous time, which are the
main object of interest in this section, we shall keep the terminology chain for processes in
continuous time, and use sequence for processes in discrete time. We also mention that in the
literature, Markov chains in continuous time generally concern only countable state spaces;
some authors prefer to refer to pure-jump Markov processes in the case of a general
topological state space. Nonetheless, we shall use here the name chain to underline the
hold-jump structure (which will be described below), and keep the name process for
continuous evolutions, that is situations where the process may not remain constant on
arbitrarily small time-interval.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521867282 - Random Fragmentation and Coagulation Processes
Jean Bertoin
Excerpt
More information

http://www.cambridge.org/0521867282
http://www.cambridge.org
http://www.cambridge.org


8 Self-similar fragmentation chains

sequence Y . More precisely, conditionally on the sequence Y = �yn� n ∈ �+�,
we shall replace the unit waiting time at each step yn by an exponential
variable with parameter q�yn� (thus depending on the state of Y at this step),
independently of the other steps. The construction is specified by the following
procedure.
Let e0� e1� � � �be a sequence of i.i.d. standard exponential variables, which

is independent of Y . We associate to every sample path of Y the additive
functional

A�n� �=
n∑

i=0

ei/q�Y�i�� � n ∈ �+ �

which represents the instant at which X jumps from the state Y�n� to the state
Y�n+1�. This procedure enables us to define X�t� for any t ≥ 0 if and only
if the series A��� �=∑�

i=0 ei/q�Y�i�� diverges. In this direction, we recall the
following well-known fact.

Lemma 1.1 The conditions

A��� �=
�∑
i=0

ei/q�Y�i��=� a.s. (1.1)

and
�∑
i=0

1/q�Y�i��=� a.s. (1.2)

are equivalent.

Proof We shall prove a slightly stronger result. Let �yi� i ∈ �+� be some
sequence of points in E, which should be thought of as the sequence of the
states visited by Y . On the one hand, the identity

�

( �∑
i=0

ei/q�yi�

)
=

�∑
i=0

1/q�yi�

shows that if the series on the right-hand side converges, then
∑�

i=0 ei/q�yi� <
� a.s. Conversely, taking the Laplace transform, we get

�

(
exp

(
−

�∑
i=0

ei/q�yi�

))
=

�∏
i=0

q�yi�

1+q�yi�

= exp

(
−

�∑
i=0

ln �1+1/q�yi��

)
�
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1.1 Construction of fragmentation chains 9

If the series
∑�

i=0 ei/q�yi� converges with positive probability, then the right-
hand side above has to be strictly positive and hence

∑�
i=0 1/q�yi� <�. Note

from the first part of the proof that this forces the series
∑�

i=0 ei/q�yi� to
converge with probability one, a fact that can also be observed directly from
Kolmogorov’s 0-1 law. �

Condition (1.2) is plainly fulfilled whenever

sup
x∈E

q�x� <� 
 (1.3)

however, in general checking whether (1.2) holds can be tedious. Henceforth,
taking (1.1) for granted, we may introduce the time-change

��t�=min �n ∈ �+ � A�n� > t� � t ≥ 0


one says that ��·� is the right-continuous inverse of the additive functional
A�·�. Then we define a process in continuous time X = �X�t�� t ≥ 0� by the
identity

X�t� �= Y���t�� � t ≥ 0 �

This construction by random time-substitution can be rephrased in terms of a
so-called hold-jump description: the states x ∈ E with q�x�= 0 are absorbing
for X, that is

��X�t�= x for all t ≥ 0 � X�0�= x�= 1 �

and starting from some non-absorbing state x ∈E with q�x�> 0, the process X
stays at x up to the holding time e0/q�x� which has an exponential distribution
with parameter q�x�, and then jumps2 according to the probability distribution
q̄�x� ·�, independently of the holding time. It is easily seen from the absence
of memory of exponential variables that X enjoys the Markov property; one
says that X is a Markov chain (in continuous time). Note also that X has
right-continuous paths a.s.
The semigroup �Pt� t ≥ 0� of X is the family of linear operators on the

space of bounded measurable functions f � E →� defined by

Ptf�x� �= ��f�X�t� � X�0�= x� � x ∈ E


2 When q�x� �x�� > 0, the probability that process X stays at the state x after the exponential
holding time is positive, so strictly speaking there may be no jump after this first holding
time. However, this induces no difficulty whatsoever, and it is convenient not to distinguish
this degenerate case.
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10 Self-similar fragmentation chains

it satisfies the Chapman-Kolmogorov equation

Pt �Ps = Pt+s � t� s ≥ 0 �

It is easy to check from the hold-jump description that for every bounded
measurable function f � E →�,

Gf�x� �= lim
t→0+

1
t
��f�X�t��−f�X�0�� � X�0�= x�

=
∫
E
�f�y�−f�x�� q�x�dy� � (1.4)

which identifies the infinitesimal generator G of X. In particular, combining
with the Chapman-Kolmogorov equation yields the classical backward
equation

dPtf�x�

dt
= GPtf�x� � t ≥ 0 � (1.5)

Further, when the function Gf is bounded on E, we also have the forward
equation

dPtf�x�

dt
= PtGf�x� � t ≥ 0 � (1.6)

A well-known alternative characterization of the infinitesimal generator is that
for every bounded measurable function f � E→� such that Gf is bounded, Gf
is the unique bounded measurable function g � E →� for which the process

f�X�t��−
∫ t

0
g�X�s��ds � t ≥ 0

is a martingale under ��· � X�0�= x� for every x ∈ E.
Either the construction of X or (1.4), shows that the family �q�x� ·�� x ∈ E�

can be thought of as the jump rates of X, and thus entirely characterizes the
distribution of the Markov chain X. In the same vein, note also that when
the space E is discrete and q�x� �x��= 0, the jump rates of the chain can be
recovered from its one-dimensional distributions by

q�x� �y��= lim
t→0+

1
t
��X�t�= y � X�0�= x� � x 	= y� (1.7)

Example The so-called compound Poisson processes form one of the simplest
and best known family of Markov chains in continuous time. Specifically,
consider the special case when E is some Euclidean space (or, more generally,
some nice topological group) and the jump rates �q�x� ·�� x ∈ E� are trans-
lation invariant, that is for every x ∈ E, q�x� ·� is the image of some given
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