
1 Microstructural Analysis

Many properties of materials depend on the grain size and the shape of grains.
Analysis of microstructures involves interpreting two-dimensional cuts through
three-dimensional bodies. Of interest are the size and aspect ratios of grains,
and the relations between grain size and the amount of grain boundary area per
volume. Also of interest is the relation between the number of faces, edges, and
corners of grains.

Grain size

There are two commonly used ways of characterizing the grain size of a crystalline
solid. One is the ASTM grain size number, N , defined by

n = 2N−1 or N = 1 + ln(n)/ ln 2, (1.1)

where n is the number of grains per square inch observed at a magnification of
100X. Large values of N indicate a fine grain size. With an increase of the grain
diameter by a factor of

√
2, the value of n is cut in half and N is decreased by 1.

EXAMPLE 1.1. Figure 1.1 is a micrograph taken at 200X. What is the ASTM
grain size number?

SOLUTION: There are 29 grains entirely within the micrograph. Counting each
grain on an edge as one half, there are 22/2 = 11 edge grains. Counting each cor-
ner grain as one quarter, there is 1 corner grain. The total number of grains
is 41. The 12 square inches at 200X would be 3 square inches at 100X, so
n = 41/3 = 13.7. From Equation (1.1),

N = ln(n)/ ln(2) + 1 = 4.78 or 5.

The average linear intercept diameter is the other common way to character-
ize grain sizes. The system is to lay down random lines on the microstructure
and count the number of intersections per length of line. The average intercept
diameter is then �̄ = L/N , where L is the total length of line and N is the number
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2 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

1.1. Counting grains in a microstructure at
200X.

of intercepts. Alternatively, a rectangular grid of lines may be laid down on an
equiaxed microstructure.

EXAMPLE 1.2. Find the average intercept diameter for the micrograph in
Figure 1.1.

SOLUTION: In Figure 1.2, 6 × 4 + 5 × 3 = 39 inches of line are superimposed on
the microstructure. This corresponds to (39 in. /200)(25.4 mm/in.) = 4.95 mm.
There are 91 intercepts so �̄ = .495/91 = 0.054 mm = 54 µm.

1.2. Finding the linear intercept grain size of
a microstructure at 200X.

For random microstructures, �̄ and the ASTM grain size are related. An approx-
imate relationship can be found by assuming that the grains can be approximated
by circles of radius, r. The area of a circular grain, πr2, can be expressed as
the average linear intercept, �̄, times its width, 2r, as shown in Figure 1.3, so
�̄ · 2r = πr2. Therefore,

r = (2/π)�̄ or �̄ = (π/2) r. (1.2)
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MICROSTRUCTURAL ANALYSIS 3

l

2r1.3. The area of a circle, π r 2, equals the
average intercept times twice the radius,
2�̄ r , so �̄ = (π/2) r .

Thus, the area per grain is A = 2r �̄ = (4/π) �̄ 2. The number of grains per area
is (π/4)/�̄ 2. From the definition of n, the number of grains per area is also
n[(25.4 mm/in.)/(100 in.)]2. Substituting n = 2N−1 = 2N /2 and equating,

(π/4)/�̄ 2 = (2N /2)(0.254)2. (1.3)

Solving for �̄,

�̄ = 4.93/2N/2. (1.4)

Often grains are not equiaxed. They may be elongated in the direction of prior
working. Restriction of grain growth by second-phase particles may prevent for-
mation of equiaxed grains by recrystallization. In these cases, the linear intercept
grain size should be determined from randomly oriented lines or an average of two
perpendicular sets of lines. The degree of shape anisotropy can be characterized
by an aspect ratio, α, defined as the ratio of average intercept in the direction of
elongation to that at 90◦:

α = �̄||/�̄⊥. (1.5)

Relation of grain boundary area per volume to grain size

The grain boundary area per volume is related to the linear intercept. Assuming
that grain shapes can be approximated by spheres, the grain boundary surface per
grain is 2πR2, where R is the radius of the sphere. (The reason that it is not 4πR2

is that each grain boundary is shared by two neighboring grains.) The volume per
spherical grain is (4/3)πR3, so the grain boundary area/volume, Sv , is given by

Sv = (2πR2)/[(4/3)πR3] = 3/(2R). (1.6)

To relate the spherical radius, R, to the linear intercept, �̄, consider the circle
through its center, which has an area of πR2 (Figure 1.4). The volume equals
the product of this area, πR2, and the average length of line, �̄, perpendicular
to it, v = �̄πR2. Therefore, (4/3)πR3 = πR2�̄ or R = (3/4)�̄. Substituting into
Sv = 3/(2R),

Sv = 2/�̄. (1.7)
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4 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

RπR2

l 1.4. The volume of a sphere = �̄πR2.

Relation of intersections per area and line length

The number of intersections per area of dislocations with a surface is less than the
total length of dislocation line per volume. Consider a single line of length L in a
box of height h and area of A. The number of intersections per area, NA, equals
1/A (Figure 1.5). The length per volume is LV = L/(h A) so NA/LV = h/L .
Because cos θ = h/L, NA/LV = cos θ. For randomly oriented lines, the number
oriented between θ and θ + dθ is dn = nd f , where d f = sin θdθ. For randomly
oriented lines, NA/LV = ∫ 2π cos θ sin θdθ = 1/2. Therefore,

NA = LV /2. (1.8)

A

L

h

θ 1.5. Relation of the number of intersections
per area with the length of line per volume.

Volume fraction of phases

Point counting is the easiest way of determining the volume fraction of two or more
phases in a microstructure. The volume fraction of a phase equals the fraction of
points in an array that lies on that phase. A line count is another way of finding
the volume fraction. If a series of lines are laid on a microstructure, the volume
fraction of a phase equals the fraction of the total line length that lies on that
phase.

Alloy composition from volume fraction of two or more phases

The composition of an alloy can be found from the volume fractions of phases.
The relative weight of component B in the α phase is (Vα)(ρα)(Cα), where Vα is
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MICROSTRUCTURAL ANALYSIS 5

the volume fraction of α, ρα is the density of α, and Cα is the composition (%B)
of the α phase. With similar expressions for the other phases, the relative weight
of component B, WB , is given by

WB = (Vα)(ρα)(Cα) + (Vβ)(ρβ)(Cβ) + · · · (1.9)

With similar expressions for the other components, the overall composition of the
alloy is

%B = 100WB/(WA + WB + · · ·). (1.10)

Microstructural relationships

Microstructures consist of three-dimensional networks of cells or grains that fill
space. Each cell is a polyhedron with faces, edges, and corners. Their shapes
are strongly influenced by surface tension. However, before examining the nature
of three-dimensional microstructures, the characteristics of two-dimensional net-
works will be treated.

A two-dimensional network of cells consists of polygons, edges (sides), and
corners. The number of each is governed by the simple relation

P − E + C = 1, (1.11)

where P is the number of polygons, E is the number of edges, and C is the number
of corners. Figure 1.6 illustrates this relationship. If the microstructure is such
that three and only three edges meet at each corner, E = (3/2)C , so

P − C/2 = 1 and P − E/3 = 1. (1.12)

P = 1
E = 5
C = 5

P = 4
E = 12
C = 9

P = 4
E = 17 
C = 14

1.6. Three networks of cells illustrating that P − E + C = 1.

For large numbers of cells, the one on the right-hand side of Equations (1.9)
and (1.10) becomes negligible, so E = 3P and C = 2P . This restriction of three
edges meeting at a corner also requires that the average angle at which the edges
meet is 120◦ and that the average number of sides per polygon is six.
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6 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

If the edges were characterized by a line tension (in analogy to the surface
tension of surfaces in three dimensions) and if the line tensions for all edges were
equal, equilibrium would require that all edges meet at 120◦, so cells with more
than six edges would have to be curved with the center of curvature away from
the cell and those cells with fewer than six sides would be curved the opposite
way, as shown in Figure 1.7. Since boundaries tend to move toward their centers
of curvature, the cells with large numbers of sides would tend to grow and those
with few sides should shrink. Only a network in which all of the cells were regular
hexagons would be stable.

1.7. The sides of grains with fewer than six neighbors are inwardly concave (left). The sides of
grains with more than six neighbors are outwardly concave (right).

Three-dimensional relations

Euler proposed that for a single body

C − E + F − B = 1. (1.13)

For an infinite array of three-dimensional bodies,

C − E + F − B = 0. (1.14)

Here, B is the number of bodies (grains), F is the number of faces, E is the
number of edges, and C is the number of corners. Consider an isolated cube,
for example. There is one body, and there are six faces, 12 edges, and eight
corners. B = 1, F = 6, E = 12, and C = 8. 8 − 12 + 6 − 1 = 1. For an infi-
nite array of stacked cubes, each face is shared by two cubes so F = 6B/2.
Each edge is shared by four cubes so E = 8B/4, and each corner is shared by
eight cubes so C = 12B/8. Substituting into Euler’s equation, 8B/8 − 12B/4 +
6B/2 − B = 0. Table 1.1 illustrates Equation (1.11) for several simple polyhedra.

Kelvin tetrakaidecahedron

Grains in a real material have certain restrictions: Each corner is shared by four
grains, and each edge is shared by three grains. Furthermore, grains stack in such
a way as to fill space. Very few simple shapes fulfill these conditions. One simple
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MICROSTRUCTURAL ANALYSIS 7

Table 1.1. Characteristics of several polyhedra

Polyhedron Faces (F) Edges (E) Corners (C) F − E + C

Tetrahedron 4 6 4 2
Cube 6 12 8 2
Octahedron 8 12 6 2
Dodecahedron(cubic) 12 24 14 2
Dodecahedron(pentag.) 12 30 20 2
Tetrakaidecahedron 14 36 24 2

1.8. The Kelvin tetrakaidecahedron and its construction by truncation of an octahedron by a
cube. The edges of the tetrakaidecahedron are one third as long as the edges of the octahedron.

shape is the tetrakaidecahedron proposed by Lord Kelvin.* Figure 1.8 shows that
it can be thought of as a cube with each corner truncated by an octahedron.
Alternatively, it can be thought of as an octahedron with each corner truncated
by a cube. There are 14 faces, 36 edges, and 24 corners. For an infinite array of
these polyhedra,

F = 14B/2 = 7B, C = 24B/4 = 6B, and E = 36B/3 = 12B,

so C − E + F − B = 6B − 12B + 7B − B = 0.

This shape is a useful approximation for analyzing grains in a polycrystal. For
example, calculation of the surface area of the faces to the grain volume can be
compared with other solid shapes and a sphere. Six of these are squares parallel
to {100} planes and eight are regular hexagons parallel to {111} planes. There
are 24 corners and 36 edges. Thus, the total length of edges is 36e, where e is the
length of an edge, and the total surface area is the area of the six square faces plus
the eight hexagonal faces:

6e2 + 8(3
√

3)e2 = 47.569e2.

The volume is the volume of the octahedron less the volume of the six truncated
pyramids:

[9
√

2 − 6(1/3
√

2)]e3 = 8
√

2e3 = 11.314e3.

* W. T. Lord Kelvin, Proc. R. Soc. 55 (1894).
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8 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

Of the 14 faces, 6 have four edges and 8 have six edges. The average number
of edges per face is (6 × 4 + 8 × 6)/14 = 51/7 This is very close to the results of
experiments on β brass, vegetable cells, and soap bubbles, as shown in Figure 1.9.
For the Kelvin tetrakaidecahedron the ratio of surface area to that of a sphere of
the same volume is 1.099. Most other shapes have much higher ratios.

edges per face
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1.9. Frequency of polygonal faces with dif-
ferent numbers of edges. Data from C. S.
Smith, in Metal Interfaces (Cleveland, OH:
ASM, 1952). Reprinted with permission from
ASM International®. All rights reserved.
www.asminternational.org.

NOTES OF INTEREST

1. Lord Kelvin (1824–1907), a Scottish mathematician and physicist, did the
pioneering work on the second law of thermodynamics, arguing that it was the
explanation of irreversible processes. He noted that the continual increase of
entropy would lead to a universe with a uniform temperature and maximum
entropy.

2. Waire and Phelan* report that space filling is 0.3% more efficient with an
array of of six polyhedra with 14 faces and two polyhedra with 12 faces than
with the Kelvin tetrakaidecahedron. (This calculation allows faces in each
to be curved.) The 14-faced polyhedra have 12 pentagonal and 2 hexagonal
faces, while the 12-faced polyhedra have distorted pentagons for faces. The
average number of faces per polyhedra = (6 × 14 + 2 × 12)/8 = 13.5.
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MICROSTRUCTURAL ANALYSIS 9

PROBLEMS

1. A soccer ball has 32 faces. They are all either pentagons or hexagons. How
many are pentagons?

2. Figure 1.10 is a microstructure at a magnification of 200X.
A. Determine the ASTM grain size number.
B. Determine the intercept grain size.
C. Compare the answers to A and B using Equation (1.5).

3. Count the number of triple points in Figure 1.10 and deduce the ASTM grain
size from this count. Compare with your answer to Problem 2A.

8  cm

8 
 c

m

1.10. Hypothetical microstructure at a mag-
nification of 200X.

4. What is the linear intercept grain size (in millimeters) corresponding to an
ASTM grain size number of 8?

5. Dislocation density is often determined by counting the number of disloca-
tions per area intersecting a polished surface. If the dislocation density in
cold-worked copper is found to be 2 × 1010/cm2, what is the total length of
dislocation line per volume?

6. Calculate the average number of edges per face for the space-filling array of
polyhedra reported by Waire and Phelan.

7. If the ASTM grain size number is increased by one, by what factor is the
number of grains per volume changed?

8. If a material with grains shaped like tetrakaidecahedra were recrystallized
and new grains were nucleated at each corner, by what factor would the grain
diameter, �̄, change?
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10 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

9. Derive an equation relating the aspect ratio of a microstructure after uniaxial
tension to the strain, assuming that the microstructure was initially equiaxed.

10. Determine the aspect ratio in Figure 1.11.

1.11. Microstructure for Problem 10.

11. Determine the volume fraction of graphite in the cast iron shown in
Figure 1.12.

1.12. A schematic drawing of ferritic ductile
cast iron. The white areas are ferrite and the
dark circles are graphite.
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