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Background material

This chapter introduces notation and terminology and summarizes aspects of the
theories of affine and projective transformations, convex and star sets, and mea-
sure and integration appearing frequently in the sequel.

Some passages are designed to ease the beginner into these areas, but not all the
material is elementary. It is intended that the reader start with Chapter 1, and use
the present chapter as a reference manual. For Chapter 1, the requisite material
is included in the first four sections of this chapter only, and for Chapter 2, the
requisite material is included in the first five sections only.

0.1. Basic concepts and terminology
This section is a brief review of some basic definitions and notation. Any unex-
plained notation can be found in the list at the end of the book.

Almost all the results in this book concern Euclidean n-dimensional space E
n .

The origin in E
n is denoted by o, and if x ∈ E

n , we usually label its coordinates
by x = (x1, . . . , xn). (In E

2 and E
3 we often use a different letter for a point

and label its coordinates in the traditional way by x , y, and z.) The Euclidean
norm of x is denoted by ‖x‖, and the Euclidean scalar product of x and y by
x · y. The closed line segment joining x and y is [x, y]. Points are identified
with vectors, and are always denoted by lowercase letters. For sets we usually
employ capitals, although we also use lowercase for straight lines. Script capitals
are used for classes of sets; an exception is the S we use for sets of directions
in Chapters 1 and 2, but here we are really identifying a direction with the line
through the origin parallel to it. The natural numbers, real numbers, and complex
numbers have the usual symbols N, R, and C. The letters i , j , k, m, and n denote
integers unless it is stated otherwise (in parts of the book i often represents a
real number), or unless we are working with complex numbers, when i2 = −1
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2 Background material

as usual. In particular, the default meaning of an expression such as 1 ≤ i ≤ n
is i ∈ {1, . . . , n}.

The unit ball in E
n is B = {x : ‖x‖ ≤ 1}, with surface the unit n-sphere

S n−1 = {x : ‖x‖ = 1}. When necessary we may write Bn instead of B. We
attempt to reserve u for the members of S n−1, the unit vectors. If u ∈ S n−1, then
u⊥ is the (n − 1)-dimensional subspace orthogonal to u, and lu the 1-dimensional
subspace parallel to u. Generally, S is used for a subspace, and S⊥ for its com-
plementary orthogonal subspace. The Grassmann manifold of k-dimensional sub-
spaces of E

n is denoted by G(n, k). More often than not the topology on G(n, k)

is unnecessary, and the symbol then simply denotes the corresponding set of sub-
spaces.

Translates of subspaces are called planes or flats, or hyperplanes if they are
(n − 1)-dimensional. A hyperplane divides the space into two half-spaces (half-
planes in E

2). A ray is a semi-infinite straight line. If E is a set, the linear hull
lin E and affine hull aff E of E are, respectively, the smallest subspace and the
smallest plane containing E . The dimension dim E of a set E is the dimension of
its affine hull.

We say that two planes are parallel if one is contained in a translate of the other,
and orthogonal if, when translated so that they contain the origin, one contains the
complementary orthogonal subspace of the other. (These terms are often used by
other authors in a more restrictive way.) A slab is the closed region between two
parallel hyperplanes.

Suppose that F1, F2 are planes in E
n , of dimensions d1 and d2, respectively.

Then by [85, Theorem 32.1], either F1 ∩ F2 = ∅ or dim(F1 ∩ F2) ≥ d1 + d2 − n.
The planes F1 and F2 are in general position with respect to each other if either
d1 + d2 < n, F1 ∩ F2 = ∅, and there is no direction parallel to both planes, or
d1 + d2 ≥ n and dim(F1 ∩ F2) = d1 + d2 − n. See [85, pp. 88–90] for more
information. A finite set of points in E

n is said to be in general position if no
more than k + 1 of them belong to any k-dimensional plane.

A few of our results are set in 2-dimensional projective space P
2. Generally,

n-dimensional projective space P
n can be defined as the space of 1-dimensional

subspaces of E
n+1. The points of P

n are labeled by homogeneous coordinates
w = (w1, . . . , wn+1), not all zero, so for real t = 0 the points w and tw are
identified; see, for example, [85, p. 217]. In this way, P

1 can be regarded as
the unit circle S1 with antipodal points identified. We can also identify E

n with
{w : wn+1 = 0}, where the usual coordinates are given by xi = wi/wn+1. The
remaining set H∞ = {w : wn+1 = 0} is the hyperplane at infinity (strictly speak-
ing, a copy of P

n−1). In particular, P
2 can be regarded as E

2 with a line at infinity
(strictly speaking, a copy of P

1) adjoined.
Our terminology for set theory and topology is standard. If E is a set, then |E |,

co E , cl E , int E , and bd E denote the cardinality, complement, closure, interior,
and boundary of E , respectively; also, relint E is the relative interior of E , that
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0.2 Transformations 3

is, the interior of E relative to aff E . The relative boundary of E is the boundary
of E relative to aff E . The symmetric difference of E and F is

E � F = (E \ F ) ∪ (F \ E).

A Gδ set is a countable intersection of open sets, and an Fσ set is a countable
union of closed sets. A set is of first category if it is the countable union of
nowhere dense sets, and residual if it is the complement of a set of first cate-
gory. A set in a locally compact Hausdorff space is residual if it contains a dense
Gδ set; see, for example, [700, pp. 158–60 and 200–1]. A component of a set is a
maximal connected subset. A closed set is regular if it is the closure of its interior,
and a body is a compact, regular set.

The diameter diam E of a set E is

diam E = sup {‖x − y‖ : x, y ∈ E}.
If x is a point and E is a closed set, the distance between x and E is

d(x, E) = inf {‖x − y‖ : y ∈ E}.
If E and F are sets, and r is a real number, then

E + F = {x + y : x ∈ E, y ∈ F},
and

r E = {r x : x ∈ E}.
A set E is called centered if −x ∈ E whenever x ∈ E , and centrally symmetric

if there is a vector c such that the translate E − c of E by −c is centered. In the
latter case c is called a center of E . The center of a nonempty bounded centrally
symmetric set is unique.

If X is a subset of E
n , or indeed any topological space, the support of a real-

valued function f on X is the set cl {x ∈ X : f (x) = 0}. We denote by C(X) the
class of continuous real-valued functions on X . When X is an appropriate subset
of E

n , Ce(X) denotes the even functions in C(X), and C+
e (X) the nonnegative

functions in Ce(X).
If f and g are real-valued functions, we say that f = O(g) on A ⊂ R if

there is a constant c such that | f (x)| ≤ c|g(x)| for all x ∈ A. When A = N, we
sometimes say that f = O(g) as n → ∞, while f = O(g) as x → 0 means that
f = O(g) on A = (0, a) for sufficiently small a.

0.2. Transformations
No single book seems to provide a completely satisfactory introduction to the
various types of transformations of E

n and P
n ; somehow the required material
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4 Background material

falls between the texts on Euclidean or projective geometry currently available.
Borsuk’s book [85] is possibly the most comprehensive text for this purpose, but
its notation is quite outdated.

If A is an n × n matrix, the inverse and transpose of A are denoted by A−1

and At . We call A singular or nonsingular according to whether det A = 0 or
det A = 0, respectively; A−1 exists precisely when A is nonsingular. We also
adopt the abbreviation A−t for (A−1)t . Note that if A is nonsingular, then At is
also, and (At )−1 = (A−1)t .

For transformations φ of E
n and P

n , we shall permit ourselves the shorthand
φx = φ(x). The reader may find Figure 0.1 useful in interpreting the definitions
given below.

o

rotation

o

K

linear transformation

o

affine transformation

x

o

reflection in o

x

translation

x

rigid motion

homothety

x

x

direct rigid motion

similarity

x

dilatation

o

Figure 0.1. Transformations of a set K .

A linear transformation (or affine transformation) of E
n is a map φ from E

n

to itself such that φx = Ax (or φx = Ax + t , respectively), where A is an
n × n matrix and t ∈ E

n . (Here x is considered as a column vector, of course.)
We call φ singular or nonsingular according to whether A is singular or nonsin-
gular, respectively. The group of nonsingular linear (or affine) transformations is
denoted by GLn (or G An); its members are, in particular, bijections of E

n onto
itself. The group of special linear (or special affine) transformations of E

n is de-
noted by SLn (or S An , respectively). These are the members of GLn (or G An)
whose determinant is one. We shall write det φ instead of det A, and φ−1, φt , and
φ−t for the affine transformations with corresponding matrices A−1, At , and A−t ,
respectively.
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0.2 Transformations 5

If A is the identity matrix, then φx = x + t , and the map φ is called a transla-
tion. Each affine transformation is composed of a linear transformation followed
by a translation.

Any set of n + 1 points in general position in E
n can be mapped onto any

second set of n + 1 points by a suitable affine transformation, and the latter is
nonsingular if the second set is also in general position (see [595, Theorem 7,
p. 16]).

If φ ∈ G An , then φ takes parallel k-dimensional planes onto parallel k-
dimensional planes (cf. [85, p. 156]).

An isometry of E
n is a map φ such that ‖φx −φy‖ = ‖x − y‖; in other words,

a distance-preserving bijection. Isometries are also called congruences, and the
image and pre-image under an isometry are said to be congruent. Every isometry
is affine (see, for example, [85, p. 150] or [839, p. 139]). Examples of isometries
are the translations and the reflections, which map all points to their mirror images
in some fixed point, line, or plane. (In particular, φx = −x is the reflection in the
origin.)

If F = S + x0 (where S ∈ G(n, k), x0 ∈ E
n , and 1 ≤ k ≤ n − 1) is a k-

dimensional plane, and x ∈ E
n , then there are unique points y ∈ S and z ∈ S⊥

such that x = y + z, and we can define a map taking x to y + x0 ∈ F . This map is
the (orthogonal) projection on the plane F . It is a singular affine transformation.
If E is an arbitrary subset of E

n , the image of E under a projection on a plane F
is called the projection of E on F and denoted by E |F . Since E |S is a translate
of E |F when F = S + x0, we almost always work with the former.

If φ ∈ GLn , then

x · φy = φt x · y, (0.1)

for all x , y ∈ E
n . The orthogonal group On of orthogonal transformations con-

sists of those isometries of E
n that are also linear transformations; these are pre-

cisely the maps φ preserving the scalar product, that is, φx · φy = x · y. (An
orthogonal matrix satisfies At = A−1 and by (0.1) we have φt = φ−1, hence
the name.) It follows from this that orthogonal transformations have determinants
with absolute value one. As is shown in [85, Theorem 50.6], every isometry is an
orthogonal transformation followed by a translation, and for this reason isome-
tries are sometimes also called rigid motions. The special orthogonal group SOn

of rotations about the origin consists of those orthogonal transformations with de-
terminant one. A direct rigid motion is a rotation followed by a translation; these
do not allow reflection.

A dilatation is a map φx = r x , for some r > 0. A homothety is a map
φx = r x +t , for some r > 0 and t ∈ E

n , that is, a composition of a dilatation with
a translation (this is sometimes referred to as a direct homothety). A similarity is
a composition of a dilatation with a rigid motion. We say two sets are homothetic
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6 Background material

(or similar) if one of them is an image of the other under a homothety (or similar-
ity, respectively), or if one of the sets is a single point.

We find occasional use for projective transformations of P
n . Such a transfor-

mation is given in terms of homogeneous coordinates by φw = Aw + t , where
A is an (n + 1) × (n + 1) matrix and t ∈ E

n+1, and where φ is called nonsingu-
lar if det A = 0. Since we can regard P

n as E
n with a hyperplane H∞ adjoined,

we can also speak of a projective transformation of E
n . In this regard, another

formulation is useful. A projective transformation φ of E
n has the form

φx = ψx

x · y + t
, (0.2)

where ψ ∈ G An , y ∈ E
n , and t ∈ R, and φ is nonsingular if the associated linear

map

ψ̄(x, 1) = (ψx, x · y + t)

is nonsingular. If y = o, then φ is affine, but if y = o, φ maps the hyperplane
H = {x : x · y + t = 0} onto H∞. To avoid points in a set E being mapped into
H∞, we may insist that φ be permissible for E ; this simply means that E∩H = ∅.

Projective transformations map planes onto planes (neglecting the points map-
ping to or from infinity); see [595, pp. 19–20]. They also preserve cross ratio;
a proof is given in [85, Corollary 96.11]. (The cross ratio of four points xi ,
1 ≤ i ≤ 4 on a line is defined by

〈x1, . . . , x4〉 = (x3 − x1)(x4 − x2)

(x4 − x1)(x3 − x2)
,

where xi also denotes the coordinate of the point xi in a fixed Cartesian coordinate
system on the line.) Affine transformations are also projective transformations, so
the former also preserve cross ratio.

The sets E and F are called linearly, affinely, or projectively equivalent if there
is a nonsingular transformation φ, linear, affine, or projective and permissible for
E , respectively, such that φE = F . Suppose that E and F are bounded centered
sets affinely equivalent via a nonsingular transformation φ. If φo = p, then p is
the center of F ; but since o is the unique center of F , we have p = o. Therefore
φ is linear, proving that E and F are linearly equivalent.

0.3. Basic convexity
There are several possibilities for an introduction to the basic properties of convex
sets. For the absolute beginner, the books of Lay [499] and Webster [827] are
recommended. The first chapter of [595], by McMullen and Shephard, is terse, but
very informative, as is the first chapter of [737], by Schneider. The text of [845],
by Yaglom and Boltyanskĭı, is set out in the form of exercises and solutions, with
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0.3 Basic convexity 7

plenty of helpful diagrams. Chapters 11 and 12 of Berger’s two-volume set [52],
[53], contain some wonderful pictures, and Lyusternik’s little book [554] is quirky
but delightful. A list of books on convexity can be found in [737, p. 433].

A set C in E
n is called convex if it contains the closed line segment joining

any two of its points, or, equivalently, if (1 − t)x + t y ∈ C whenever x , y ∈ C
and 0 ≤ t ≤ 1. A convex set, then, has no “holes” or “dents.” A convex body is
a compact convex set whose interior is nonempty; this definition conforms with
general usage, but the reader is warned that in the important texts of Bonnesen and
Fenchel [83] and Schneider [737] any compact convex set qualifies as a convex
body. The convex hull conv E of a set E is the smallest convex set containing it.

If C is a compact convex set, a diameter of C is a chord [x, y] of C such that
‖x − y‖ = diam C .

A hyperplane H supports a set E at a point x if x ∈ E ∩ H and E is contained
in one of the two closed half-spaces bounded by H . We say H is a supporting
hyperplane of E if H supports E at some point.

A convex body is strictly convex if its boundary does not contain a line seg-
ment and smooth if there is a unique supporting hyperplane at each point of its
boundary.

The intersection of a compact convex set with one of its supporting hyper-
planes is called a face, and (n − 1)-dimensional faces are also called facets.
An extreme point of K is one not contained in the relative interior of any line
segment contained in K . The point x is called an exposed point of K if there
is a supporting hyperplane H such that H ∩ K = {x}. Every exposed point is
extreme, but the converse is not true. Also, a compact convex set is the closure
of the convex hull of its exposed points, implying that every compact convex set
has at least one exposed point (see [737, Section 1.4], especially Theorem 1.4.7).
A corner point of a compact convex set in E

2 is one at which there is more than
one supporting line.

If K1 and K2 are disjoint compact convex sets in E
n , then there is a hyperplane

H that (strictly) separates K1 and K2; that is, K1 is contained in one open half-
space bounded by H , and K2 in the other. A proof can be found in [499, Theo-
rem 4.12] or [737, Theorem 1.3.7]. (In infinite-dimensional spaces, this separation
theorem is closely related to the Hahn–Banach theorem; see [52, Section 11.4].)

Every affine transformation preserves convexity. If φ is a projective transfor-
mation, permissible for a line segment, then it maps this line segment onto another
line segment. Therefore φ preserves the convexity of convex bodies for which it
is permissible.

A nonempty subset C of E
n is a cone with vertex o if t y ∈ C whenever y ∈ C

and t ≥ 0. A convex cone with vertex o is a cone with vertex o that is convex;
such a set is closed under nonnegative linear combinations. A cone (or convex
cone) with vertex x is of the form C + x , where C is a cone (or convex cone,
respectively) with vertex o.
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8 Background material

Let us define some special convex bodies. The unit ball B in E
n was defined

already. A ball is any set homothetic to B, and an ellipsoid is an affine image
of B. The centered n-dimensional ellipsoids whose axes are parallel to the co-
ordinate axes are of the form {

x :
n∑

i=1

x2
i

a2
i

≤ 1

}
.

If 0 ≤ k ≤ n, a k-dimensional simplex in E
n is the convex hull of k + 1 points

in general position.
A polyhedron is a finite union of simplices; in E

2, we shall use the term poly-
gon instead. A convex polyhedron or convex polytope can also be defined as the
convex hull of a finite set of points. We denote by Fk(P) the set of k-dimensional
faces of a convex polytope P .

Important examples of convex polytopes are the unit cube {x : 0 ≤ xi ≤ 1,

1 ≤ i ≤ n} (and centered unit cube {x : |xi | ≤ 1/2, 1 ≤ i ≤ n}) in E
n ; the

parallelepipeds or parallelotopes, affine images of the unit cube; the boxes,
rectangular parallelepipeds with facets parallel to the coordinate hyperplanes;
and the cross-polytopes (n-dimensional versions of the octahedron), each the
convex hull of n mutually orthogonal line segments sharing the same midpoint.
An n-dimensional pyramid P is the convex hull of an (n −1)-dimensional convex
polytope Q (its base) and a point x ∈ aff Q called the apex of P .

A (right spherical) cylinder in E
n is the Cartesian product of an (n − 1)-

dimensional ball C and a line segment orthogonal to aff C . A (right spherical)
bounded cone in E

n is the convex hull of an (n − 1)-dimensional ball C and a
point on the line orthogonal to aff C through the center of C .

If K is a convex body in E
n , we denote by r(K ) and R(K ) the inradius and

circumradius of K . These are the radii of the largest n-dimensional ball contained
in K and the smallest ball containing K , respectively.

Topologically, a convex body is not very interesting. The surface of a convex
body K in E

n is homeomorphic to S n−1 via a radial map f , defined by selecting
a point x0 ∈ int K and letting

f (x) = (x − x0)/‖x − x0‖, (0.3)

for each x ∈ bd K .
A real-valued function on E

n is convex if

f
(
(1 − t)x + t y

) ≤ (1 − t) f (x) + t f (y),

for all x , y ∈ E
n and 0 ≤ t ≤ 1, and concave if − f is convex. (The terms concave

up and concave down are sometimes used for convex and concave, respectively.)
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0.4 The Hausdorff metric 9

0.4. The Hausdorff metric
Exactly what does it mean to say that a sequence of compact sets converges to
another compact set? One must have a way of measuring the distance between
two compact sets. This notion of distance must behave like the usual distance
d(x, y) = ‖x − y‖ between points, which has three fundamental properties:
d(x, y) ≥ 0, and equals zero if and only if x = y; d(x, y) = d(y, x); and
the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z).

Such a function is called a metric. We shall only define one metric for compact
sets here, though there are several in common use (see Lemma 1.2.14 for another).
The Hausdorff metric δ on the class of nonempty compact sets in E

n is defined by

δ(E, F ) = max{max
x∈E

d(x, F ), max
x∈F

d(x, E)}. (0.4)

(A geometrically more appealing definition is given later.) It can be checked that
δ satisfies the three conditions listed earlier. The proof, and basic properties of the
metric space of compact sets in E

n defined in this way, may be found in [499,
Section 14] or [737, Section 1.8].

Suppose that E is a nonempty set in E
n and ε > 0. Then

Eε = E + εB = ∪x∈E (x + εB) (0.5)

is called an outer parallel set of E . When E is closed, Eε is just the set of all
points whose distance from E is no more than ε. (See [499, Section 14], [737,
p. 134]; see also the illustration in the book [789, Fig. 1.1(b)] of Stoyan, Kendall,
and Mecke, and the interesting accompanying discussion on the utility of this
idea in the processing of images.) This convenient concept allows the following
alternative definition of the Hausdorff metric:

δ(E, F ) = min{ε > 0 : E ⊂ Fε and F ⊂ Eε}. (0.6)

This means that the Hausdorff distance between two convex bodies K1 and K2 is
at most ε if K1 is contained in the outer parallel body K2 + εB of K2, and K2 is
contained in the outer parallel body K1 + εB of K1.

The Hausdorff metric is the standard one in the study of convex sets. We de-
note by Kn (or Kn

0) the space of nonempty compact convex sets (or convex bodies,
respectively) in E

n with the Hausdorff metric. (The definition of a body in Sec-
tion 0.1 implies the existence of interior points when the set is nonempty.) It is the
default metric, always used unless stated otherwise, for example, when discussing
continuity of a function defined on the class of compact convex sets. A specific,
and important, example of this is the continuity of volume on Kn ; see [499, The-
orem 22.6] or [737, Theorem 1.8.16]. (One should try not to be blasé about such
statements. After all, length is not continuous in E

2, since one can approximate
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10 Background material

a closed line segment arbitrarily closely by polygonal arcs whose lengths are un-
bounded. According to Young [853, p. 303], this disturbed Lebesgue greatly when
he was at school! In fact, length is only semicontinuous in E

2.)
A very frequently quoted theorem is the following one, whose proof may be

found in [499, Section 15] or [737, Theorem 1.8.6].

Theorem 0.4.1 (Blaschke’s selection theorem). Every bounded sequence of
compact convex sets has a subsequence converging to a compact convex set.

(A sequence of sets is bounded if there is a ball containing each member of the
sequence.) In [737, Theorems 1.8.13 and 1.8.15], it is shown that each K ∈ Kn

can be approximated arbitrarily closely from within or without by convex poly-
topes. This implies that the class of convex polytopes is dense in Kn . It is also
known that both the class of smooth convex bodies and the class of strictly con-
vex bodies are dense in Kn ; see [737, Theorem 2.6.1].

0.5. Measure and integration
Measure theory deals with the definition and generalizations of the intuitive
notions of length, area, and volume. The subject is amply supplied with well-
written books appropriate for the novice. Many a student has learned the basics
of Lebesgue measure and integration and the rudiments of general measure the-
ory from [700], by Royden. At a slightly higher level, Munroe’s book [639] is
to be recommended. Unfortunately, however, the geometric aspects of measure
theory are often ignored in the standard introductory texts. Exceptions are [839],
by Weir (see Chapter 6 of Volume 1), and [410], by Jones (see Chapter 3). Of
course, there are books on geometric measure theory proper, but here we can only
suggest a browse of the first three of chapters of the entertaining and exquisitely
illustrated introduction [637] by Morgan; we use no advanced geometric measure
theory in this book.

In practice one can get by without most of the complicated theory of abstract
measure. We summarize here the ingredients used in the sequel.

Consider, as a first example, area in the plane. Its essential properties are:
1. Familiar sets such as triangles, disks, and so on can be assigned a real num-

ber representing the area of the set.
2. The area of a countable union of disjoint sets is the sum of the areas of the

sets; that is, area is countably additive.
3. The area of a set does not change when it is moved by a translation; that is,

area is translation invariant. In fact, area is even invariant under isometries.
The same properties hold for a generalized notion of length in the real line,

or volume in space. Length and area are denoted by λ1 and λ2, respectively. For
Chapter 1, this is all one really needs.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521866804 - Geometric Tomography, Second Edition
Richard J. Gardner
Excerpt
More information

http://www.cambridge.org/0521866804
http://www.cambridge.org
http://www.cambridge.org

