
Cambridge University Press & Assessment
978-0-521-86632-3 — Elements of Continuum Mechanics and Thermodynamics
Joanne L. Wegner , James B. Haddow
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Cartesian Tensor Analysis

1.1 Introduction

In this chapter we present an elementary introduction to Cartesian tensor

analysis in a three-dimensional Euclidean point space or a two-dimensional

subspace. AEuclidean point space is the space of position vectors of points.

The term vector is used in the sense of classical vector analysis, and scalars

and polar vectors are zeroth- and first-order tensors, respectively. The

distinction between polar and axial vectors is discussed later in this chapter.

A scalar is a single quantity that possesses magnitude and does not depend

on any particular coordinate system, and a vector is a quantity that pos-

sesses both magnitude and direction and has components, with respect to

a particular coordinate system, which transform in a definite manner under

change of coordinate system. Also vectors obey the parallelogram law of

addition. There are quantities that possess both magnitude and direction

but are not vectors, for example, the angle of finite rotation of a rigid body

about a fixed axis.

A second-order tensor can be defined as a linear operator that oper-

ates on a vector to give another vector. That is, when a second-order tensor

operates on a vector, another vector, in the same Euclidean space, is gen-

erated, and this operation can be illustrated by matrix multiplication. The

components of a vector and a second-order tensor, referred to the same

rectangular Cartesian coordinate system, in a three-dimensional Euclidean

space, can be expressed as a 3 3 1ð Þ matrix and a ð3 3 3Þ matrix, respec-

tively.When a second-order tensor operates on a vector, the components of

the resulting vector are given by thematrix product of the ð3 3 3Þmatrix of

components of the second-order tensor and the matrix of the 3 3 1ð Þ
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components of the original vector. These components are with respect to

a rectangular Cartesian coordinate system, hence the term Cartesian tensor

analysis. Examples from classical mechanics and stress analysis are as follows.

The angular momentum vector, h, of a rigid body about its mass center is

given by h ¼ Jv where J is the inertia tensor of the body about its mass

center and v is the angular velocity vector. In this equation the components

of the vectors h andv can be represented by 3 3 1ð Þmatrices and the tensor

J by a ð3 3 3Þ matrix with matrix mutiplication implied. A further example

is the relation t ¼ sn, between the stress vector t acting on a material area

element and the unit normal n to the element, where s is the Cauchy stress

tensor. The relations h ¼ Jv and t ¼ sn are examples of coordinate-free

symbolic notation, and the corresponding matrix relations refer to a partic-

ular coodinate system.

We will meet further examples of the operator properties of second-

order tensors in the study of continuum mechanics and thermodynamics.

Tensors of order greater than two can be regarded as operators oper-

ating on lower-order tensors. Components of tensors of order greater than

two cannot be expressed in matrix form.

It is very important to note that physical laws are independent of any

particular coordinate system. Consequently, equations describing physical

laws, when referred to a particular coordinate system, must transform in

definite manner under transformation of coordinate systems. This leads to

the concept of a tensor, that is, a quantity that does not depend on the

choice of coordinate system. The simplest tensor is a scalar, a zeroth-order

tensor. A scalar is represented by a single component that is invariant

under coordinate transformation. Examples of scalars are the density of

a material and temperature.

Higher-order tensors have components relative to various coordi-

nate systems, and these components transform in a definite way under

transformation of coordinate systems. The velocity v of a particle is an

example of a first-order tensor; henceforth we denote vectors, in sym-

bolic notation, by lowercase bold letters. We can express v by its com-

ponents relative to any convenient coordinate system, but since v has no

preferential relationship to any particular coordinate system, there must

be a definite relationship between components of v in different
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coordinate systems. Intuitively, a vector may be regarded as a directed

line segment, in a three-dimensional Euclidean point space E3, and the

set of directed line segments in E3, of classical vectors, is a vector space

V3. That is, a classical vector is the difference of two points in E3. A

vector, according to this concept, is a first-order tensor. A discussion of

linear vector spaces is given in Appendix 4.

There are many physical laws for which a second-order tensor is an oper-

ator associating one vector with another. Remember that physical laws

must be independent of a coordinate system; it is precisely this indepen-

dence that motivates us to study tensors.

1.2 Rectangular Cartesian Coordinate Systems

The simplest type of coordinate system is a rectangular Cartesian system,

and this system is particularly useful for developingmost of the theory to be

presented in this text.

A rectangular Cartesian coordinate system consists of an orthonormal

basis of unit vectors ðe1, e2, e3Þ and a point 0 which is the origin. Right-

handed Cartesian coordinate systems are considered, and the axes in the

ðe1, e2, e3Þ directions are denoted by 0x1, 0x2, and 0x3, respectively, rather

than the more usual 0x, 0y, and 0z. A right-handed system is such that a 908

right-handed screw rotation along the 0x1 direction rotates 0x2 to 0x3,

similarly a right-handed rotation about 0x2 rotates 0x3 to 0x1, and a right-

handed rotation about 0x3 rotates 0x1 to 0x2.

A right-handed system is shown in Figure 1.1. A point, x 2 E3, is given in

terms of its coordinates ðx1, x2, x3Þ with respect to the coordinate system

0x1x2x3 by

x ¼ x1e1 þ x2e2 þ x3e3,

which is a bound vector or position vector.

If points x; y 2E3, u ¼ x � y is a vector, that is, u 2V3. The vector u is

given in terms of its components ðu1, u2, u3Þ;with respect to the rectangular

1.2 Rectangular Cartesian Coordinate Systems 3
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coordinate system, 0x1x2x3 by

u ¼ u1e1 þ u2e2 þ u3e3:

Henceforth in this chapter when the term coordinate system is used,

a rectangular Cartesian system is understood. When the components of vec-

tors and higher-order tensors are given with respect to a rectangular Carte-

sian coordinate system, the theory is known as Cartesian tensor analysis.

1.3 Suffix and Symbolic Notation

Suffixes are used to denote components of tensors, of order greater than

zero, referred to a particular rectangular Cartesian coordinate system.

Tensor equations can be expressed in terms of these components; this is

known as suffix notation. Since a tensor is independent of any coordinate

system but can be represented by its components referred to a particular

coordinate system, components of a tensor must transform in a definite

manner under transformation of coordinate systems. This is easily seen

for a vector. In tensor analysis, involving oblique Cartesian or curvilinear

coordinate systems, there is a distinction between what are called contra-

variant and covariant components of tensors but this distinction disappears

when rectangular Cartesian coordinates are considered exclusively.

Bold lower- and uppercase letters are used for the symbolic rep-

resentation of vectors and second-order tensors, respectively. Suffix nota-

tion is used to specify the components of tensors, and the convention that

0
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Figure 1.1. Right-handed rectangular Cartesian coordinate system.
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a lowercase letter suffix takes the values 1, 2, and 3 for three-dimensional

and 1 and 2 for two-dimensional Euclidean spaces, unless otherwise

indicated, is adopted. The number of distinct suffixes required is equal to

the order of the tensor. An example is the suffix representation of a vector u,

with components ðu1, u2, u3Þ or ui, i 2 1, 2, 3f g. The vector is then given by

u ¼ +
3

i¼ 1

uiei: ð1:1Þ

It is convenient to use a summation convention for repeated letter suffixes.

According to this convention, if a letter suffix occurs twice in the same term,

a summation over the repeated suffix from 1 to 3 is implied without a sum-

mation sign, unless otherwise indicated. For example, equation (1.1) can be

written as

u ¼ uiei ¼ u1e1 þ u2e2 þ u3e3 ð1:2Þ

without the summation sign. The sum of two vectors is commutative and is

given by

uþ v ¼ vþ u ¼ ui þ við Þei,

which is consistent with the parallelogram rule. A further example of the

summation convention is the scalar or inner product of two vectors,

u � v ¼ uivi ¼ u1v1 þ u2v2 þ u3v3: ð1:3Þ

Repeated suffixes are often called dummy suffixes since any letter that does

not appear elsewhere in the expression may be used, for example,

uivi ¼ ujvj:

Equation (1.3) indicates that the scalar product obeys the commutative law

of algebra, that is,

u � v ¼ v � u:

1.3 Suffix and Symbolic Notation 5
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The magnitude uj j of a vector u is given by

uj j ¼
ûûûûûûûûû

u � u
p

¼ ûûûûûûûû

uiui
p

:

Other examples of the use of suffix notation and the summation convention

are

Cii ¼ C11 þ C22 þ C33

Cijbj ¼ Ci1b1 þ Ci2b2 þ Ci3b3:

A suffix that appears once in a term is known as a free suffix and is un-

derstood to take in turn the values 1, 2, 3 unless otherwise indicated. If

a free suffix appears in any term of an equation or expression, it must

appear in all the terms.

1.4 Orthogonal Transformations

The scalar products of orthogonal unit base vectors are given by

ei � ej ¼ dij, ð1:4Þ

where dij is known as the Kronecker delta and is defined as

dij ¼
1 for i ¼ j

0 for i 6¼ j

�

: ð1:5Þ

The base vectors ei are orthonormal, that is, of unit magnitude and mutu-

ally perpendicular to each other. The Kronecker delta is sometimes called

the substitution operator because

ujdij ¼ u1di1 þ u2di2 þ u3di3 ¼ ui: ð1:6Þ

Consider a right-handed rectangular Cartesian coordinate system 0x9i with

the same origin as 0xi as indicated in Figure 1.2. Henceforth, primed quan-

tities are referred to coordinate system 0x9i .

6 Cartesian Tensor Analysis
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The coordinates of a point P are xi with respect to 0xi and x9i with

respect to 0xi. Consequently,

xiei ¼ x9j e9j , ð1:7Þ

where the e9i are the unit base vectors for the system 0xi. Forming the inner

product of each side of equation (1.7) with e9k and using equation (1.4) and

the substitution operator property equation (1.6) gives

x9k ¼ akixi, ð1:8Þ

where

aki ¼ e9k � ei ¼ cosðx9k0xiÞ: ð1:9Þ

Similarly

xi ¼ akix9k: ð1:10Þ

It is evident that the direction of each axis 0x9k can be specified by giving its

direction cosines aki ¼ e9k � ei ¼ cosðx9k0xiÞ referred to the original axes

0xi. The direction cosines, aki ¼ e9k � ei, defining this change of axes are

tabulated in Table 1.1.

Thematrix a½ �with elements aij is known as the transformation matrix;

it is not a tensor.
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Figure 1.2. Change of axes.
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It follows from equations (1.8) and (1.10) that

aki ¼
@x9k
@xi

¼ @xi
@x9k

, ð1:11Þ

and from equation (1.7) that

ei
@xi
@x9k

¼ ej9
@x9j
@x9k

¼ e9k, ð1:12Þ

since @xj=@xk ¼ @jk, and from equations (1.11) and (1.12) that

e9k ¼ akiei, ð1:13Þ

and

ei ¼ akie9k: ð1:14Þ

Equations (1.13) and (1.14) are the transformation rules for base vectors.

The nine elements of aij are not all independent, and in general,

aki 6¼ aik:

A relation similar to equations (1.8) and (1.10),

u9k ¼ akiui, and ui ¼ akiu9k ð1:15Þ

is obtained for a vector u since uiei ¼ u9ke9k, which is similar to equation

(1.7) except that the ui are the components of a vector and the xi are

coordinates of a point.

Table 1.1. Direction cosines for

rotation of axes

e19 e29 e39

e1 a11 a21 a31

e2 a12 a22 a32

e3 a13 a23 a33
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The magnitude uj j ¼ uiuið Þ1=2 of the vector u is independent of the

orientation of the coordinate system, that is, it is a scalar invariant;

consequently,

uiui ¼ u9ku9k: ð1:16Þ

Eliminating ui from equation (1.15) gives

u9k ¼ akiajiu9j ,

and since u9k ¼ dkju9j ,

akiaji ¼ dkj: ð1:17Þ

Similarly, eliminating uk from equation (1.15) gives

aikajk ¼ dij: ð1:18Þ

It follows from equation (1.17) or (1.18) that

det aij
� �� �2 ¼ 1, ð1:19Þ

where det aij
� �

denotes the determinant of aij. A detailed discussion of

determinants is given in section 10 of this chapter. The negative root of

equation (1.19) is not considered unless the transformation of axes involves

a change of orientation since, for the identity transformation xi ¼ x9i ,

aik ¼ dik and det dik½ � ¼ 1. Consequently, det aik½ � ¼ 1, provided the trans-

formations involve only right-handed systems (or left-handed systems).

The transformations (1.8), (1.10), and (1.15) subject to equation (1.17)

or (1.18) are known as orthogonal transformations. Three quantities ui are

the components of a vector if, under orthogonal transformation, they trans-

form according to equation (1.15). This may be taken as a definition of

a vector. According to this definition, equations (1.8) and (1.10) imply that

the representation x of a point is a bound vector since its origin coincides

with the origin of the coordinate system.

1.4 Orthogonal Transformations 9
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If the transformation rule (1.10) holds for coordinate transformations

from right-handed systems to left-handed systems (or vice versa), the vec-

tor is known as a polar vector. There are scalars and vectors known as

pseudo scalars and pseudo or axial vectors; there have transformation rules

that involve a change in sign when the coordinate transformation is from

a right-handed system to a left-handed system (or vice versa), that is, when

det aij
� �

¼ �1. The transformation rule for a pseudo scalar is

/9 ¼ det aij
� �

/, ð1:20Þ

and for a pseudo vector

u9i ¼ det aij
� �

aijuj: ð1:21Þ

A pseudo scalar is not a true scalar if a scalar is defined as a single

quantity invariant under all coordinate transformations. An example of

a pseudo vector is the vector product u 3 v of two polar vectors u and v.

A discussion of the vector product is given in section 9 of this chapter. The

moment of a force about a point and the angular momentum of a particle

about a point are pseudo vectors. The scalar product of a polar vector and

a pseudo vector is a pseudo scalar; an example is the moment of a force

about a line. The distinction between pseudo vectors and scalars and polar

vectors and true scalars disappears when only right- (or left-) handed co-

ordinate systems are considered. For the development of continuum me-

chanics presented in this book, only right-handed systems are used.

EXAMPLE PROBLEM 1.1. Show that a rotation through angle p about an

axis in the direction of the unit vector n has the transformation matrix

aij ¼ �dij þ 2ninj, det aij
� �

¼ 1:

SOLUTION. Referring to Figure 1.3, the position vector of point A has

components xi and point B has position vector with components x9i :
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