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This wide ranging but self-contained account of the spectral theory of non-self-adjoint
linear operators is ideal for postgraduate students and researchers, and contains many
illustrative examples and exercises.

Fredholm theory, Hilbert-Schmidt and trace class operators are discussed, as are one-
parameter semigroups and perturbations of their generators. Two chapters are devoted
to using these tools to analyze Markov semigroups.

The text also provides a thorough account of the new theory of pseudospectra, and
presents the recent analysis by the author and Barry Simon of the form of the pseu-
dospectra at the boundary of the numerical range. This was a key ingredient in the
determination of properties of the zeros of certain orthogonal polynomials on the unit
circle.

Finally, two methods, both very recent, for obtaining bounds on the eigenvalues of non-
self-adjoint Schrödinger operators are described. The text concludes with a description
of the surprising spectral properties of the non-self-adjoint harmonic oscillator.
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Preface

This volume is halfway between being a textbook and a monograph. It
describes a wide variety of ideas, some classical and others at the cutting
edge of current research. Because it is directed at graduate students and
young researchers, it often provides the simplest version of a theorem rather
than the deepest one. It contains a variety of examples and problems that
might be used in lecture courses on the subject.
It is frequently said that over the last few decades there has been a decisive

shift in mathematics from the linear to the non-linear. Even if this is the case it
is easy to justify writing a book on the theory of linear operators. The range of
applications of the subject continues to grow rapidly, and young researchers
need to have an accessible account of its main lines of development, together
with references to further sources for more detailed reading.
Probability theory and quantum theory are two absolutely fundamental

fields of science. In terms of their technological impact they have been far
more important than Einstein’s relativity theory. Both are entirely linear. In
the first case this is in the nature of the subject. Many sustained attempts
have been made to introduce non-linearities into quantum theory, but none
has yet been successful, while the linear theory has gone from triumph to
triumph. Nobody can predict what the future will hold, but it seems likely
that quantum theory will be used for a long time yet, even if a non-linear
successor is found.
The fundamental equations of quantum mechanics involve self-adjoint and

unitary operators. However, once one comes to applications, the situation
changes. Non-self-adjoint operators play an important role in topics as diverse
as the optical model of nuclear scattering, the analysis of resonances using
complex scaling, the behaviour of unstable lasers and the scattering of atoms
by periodic electric fields.1

1 A short list of references to such problems may be found in [Berry, website].

ix
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x Preface

There are many routes into the theory of non-linear partial differential
equations. One approach depends in a fundamental way on perturbing linear
equations. Another idea is to use comparison theorems to show that certain
non-linear equations retain desired properties of linear cousins. In the case
of the Kortweg-de Vries equation, the exact solution of a highly non-linear
equation depends on reducing it to a linear inverse problem. In all these
cases progress depends upon a deep technical knowledge of what is, and
is not, possible in the linear theory. A standard technique for studying the
non-linear stochastic Navier-Stokes equation involves reformulating it as a
Markov process acting on an infinite-dimensional configuration space X. This
process is closely associated with a linearMarkov semigroup acting on a space
of observables, i.e. bounded functions f � X → C. The decay properties of
this semigroup give valuable information about the behaviour of the original
non-linear equation. The material in Section 13.6 is related to this issue.
There is a vast number of applications of spectral theory to problems in

engineering, and I mention just three. The unexpected oscillations of the
London Millennium Bridge when it opened in 2000 were due to inadequate
eigenvalue analysis. There is a considerable literature analyzing the charac-
teristic timbres of musical instruments in terms of the complex eigenvalues
of the differential equations that govern their vibrations. Of more practical
importance are resonances in turbines, which can destroy them if not taken
seriously.
As a final example of the importance of spectral theory I select the work

of Babenko, Mayer and others on the Gauss-Kuzmin theorem about the
distribution of continued fractions, which has many connections with modular
curves and other topics; see [Manin and Marcolli 2002]. This profound work
involves many different ideas, but a theorem about the dominant eigenvalue
of a certain compact operator having an invariant closed cone is at the centre
of the theory. This theorem is close to ideas in Chapter 13, and in particular
to Theorem 13.1.9.
Once one has decided to study linear operators, a fundamental choice

needs to be made. Self-adjoint operators on Hilbert spaces have an extremely
detailed theory, and are of great importance for many applications. We have
carefully avoided trying to compete with the many books on this subject and
have concentrated on the non-self-adjoint theory. This is much more diverse –
indeed it can hardly be called a theory. Studying non-self-adjoint operators is
like being a vet rather than a doctor: one has to acquire a much wider range
of knowledge, and to accept that one cannot expect to have as high a rate
of success when confronted with particular cases. It comprises a collection
of methods, each of which is useful for some class of such operators. Some
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Preface xi

of these are described in the recent monograph of Trefethen and Embree
on pseudospectra, Haase’s monograph based on the holomorphic functional
calculus, Ouhabaz’s detailed theory of the Lp semigroups associated with
NSA second order elliptic operators, and the much older work of Sz.-Nagy
and Foias, still being actively developed by Naboko and others. If there is a
common thread in all of these it is the idea of using theorems from analytic
function theory to understand NSA operators.
One of the few methods with some degree of general application is the

theory of one-parameter semigroups. Many of the older monographs on this
subject (particularly my own) make rather little reference to the wide range
of applications of the subject. In this book I have presented a much larger
number of examples and problems here in order to demonstrate the value of
the general theory. I have also tried to make it more user-friendly by including
motivating comments.
The present book has a slight philosophical bias towards explicit bounds

and away from abstract existence theorems. I have not gone so far as to insist
that every result should be presented in the language of constructive analysis,
but I have sometimes chosen more constructive proofs, even when they are
less general. Such proofs often provide new insights, but at the very least they
may be more useful for numerical analysts than proofs which merely assert
the existence of a constant or some other entity.
There are, however, many entirely non-constructive proofs in the book.

The fact that the spectrum of a bounded linear operator is always non-empty
depends upon Liouville’s theorem and a contradiction argument. It does not
suggest a procedure for finding even one point in the spectrum. It should
therefore come as no surprise that the spectrum can be highly unstable under
small perturbations of the operator. The pseudospectra are more stable, and
because of that arguably more important for non-self-adjoint operators.
It is particularly hard to give precise historical credit for many theorems in

analysis. The most general version of a theorem often emerges several decades
after the first one, with a proof which may be completely different from the
original one. I have made no attempt to give references to the original literature
for results discovered before 1950, and have attached the conventional names
to theorems of that era. The books of Dunford and Schwartz should be
consulted for more detailed information; see [Dunford and Schwartz 1966,
Dunford and Schwartz 1963]. I only assign credit on a systematic basis for
results proved since 1980, which is already a quarter of a century ago. I may
not even have succeeded in doing that correctly, and hope that those who feel
slighted will forgive my failings, and let me know, so that the situation can
be rectified on my website and in future editions.
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xii Preface

I conclude by thanking the large number of people who have influenced
me, particularly in relation to the contents of this book. The most important of
these have been Barry Simon and, more recently, Nick Trefethen, to both of
whom I owe a great debt. I have also benefited greatly from many discussions
with Wolfgang Arendt, Anna Aslanyan, Charles Batty, Albrecht Böttcher,
Lyonell Boulton, Ilya Goldsheid, Markus Haase, Evans Harrell, Paul Incani,
Boris Khoruzhenko, Michael Levitin, Terry Lyons, Reiner Nagel, Leonid
Parnovski, Michael Plum, Yuri Safarov, Eugene Shargorodsky, Stanislav
Shkarin, Johannes Sjöstrand, Dan Stroock, John Weir, Hans Zwart, Maciej
Zworski and many other good friends and colleagues. Finally I want to record
my thanks to my wife Jane, whose practical and moral support over many
years has meant so much to me. She has also helped me to remember that
there is more to life than proving theorems!
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