
Introduction

This book presents an almost self-contained introduction to the theory of
abstract finite (non-abelian) simple groups, which together with the cyclic
groups of prime order are the building blocks of all finite groups. The theory
developed here has concrete applications. In particular, it yields the theoreti-
cal and algorithmic background for uniform existence and uniform uniqueness
proofs of the (known) sporadic simple groups. This is demonstrated by sev-
eral examples studied in detail in the second half of the book. However, the
theoretical results and algorithms presented in the first seven chapters hold in
general. They are not restricted to sporadic groups at all.

The theory of abstract finite simple groups presented here is inspired by
the Brauer–Fowler Theorem. It asserts that there are only finitely many sim-
ple groups G which possess an involution z 	= 1 such that its centralizer CG(z)
is isomorphic to a given group H of even order. This is an important obser-
vation, because there are several series of infinitely many simple groups where
all the members in such a series have isomorphic Sylow 2-subgroups. In par-
ticular, there are infinitely many simple groups G having a Klein four group
as a Sylow 2-subgroup, see Theorem 1.6.2. Hence a simple group G is not
uniquely determined by the structure of its Sylow 2-subgroups. It is there-
fore a necessary and natural hypothesis of the Brauer–Fowler Theorem to
assume that the structure of the centralizer H = CG(z) of some involution z is
known.

In fact, when R. Brauer spoke about the Brauer–Fowler Theorem at the
International Congress in Amsterdam in 1954, he assumed that G was a group
of even order. At that time the celebrated Theorem of Feit and Thompson
[38] on the solvability of the finite groups of odd order was not known. It
implies that each finite non-abelian simple group has even order. Therefore
it has elements of order 2. Such an element is also called an involution. The
Feit–Thompson Theorem cannot be proved here. It is one of four important
cited results a proof of which cannot be found in a standard textbook. The
best known proof of the Feit–Thompson Theorem is given in the two recent
books by Bender and Glauberman [10] and Peterfalvi [129]. Whenever a proof
of a quoted result cannot be given, proper references to the literature are
provided.

The reader is assumed to know the content of a first-year graduate course
in algebra. For the study of explicit examples some practical experience with
the computer algebra systems GAP [40] and MAGMA [12] and [22] will be
helpful. Many fundamental algorithms in computational group and represen-
tation theory are described in the recent handbook of computational group
theory [76]. Therefore it is not necessary to give here a summary of all the
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2 Theory of Finite Simple Groups

elementary procedures and commands of these software packages which have
to be applied to perform concrete calculations in a finite group G of which a
faithful permutation representation is given.

The book contains 12 chapters each of which has an introduction summa-
rizing its contents. The theory of abstract finite simple groups is built on the
intimate relations between general group theory, ordinary character theory,
modular representation theory and algorithmic algebra.

Chapter 1 provides the basic definitions and results about presentations
of finite groups in terms of generators and relations. In several subsequent
chapters it will be a demanding task to find a finite presentation of a simple
group G for which only such a presentation of the centralizer CG(z) of a
suitable involution z of G is known. For this purpose several classical results
on p-groups, especially 2-groups, fusion and transfer are proved in this chapter.
In particular, a self-contained proof of Ph. Hall’s Theorem is given which
characterizes all 2-groups having only cyclic characteristic subgroups.

In Chapter 2, all the definitions and results of ordinary representation
theory of finite groups are presented which will be used later on. The main
purpose of this chapter is to provide general results which help to classify all
the conjugacy classes of a finite group G in terms of fairly short words in
the elements xi of a given finite set X = {x1, x2, . . . , xn} of generators of G,
construct all its irreducible ordinary characters χ and determine their values
χ(g) for all g ∈ G. Such a character table of G is called a concrete character
table.

One of the main results proved in Chapter 2 is R. Brauer’s characterization
of characters of finite groups. It finds many applications later on. It is not only
used for the determination of splitting fields and concrete character tables of
finite groups, but also for the solution of difficult group theoretical questions.

Brauer began his lecture at the International Congress in 1954 as follows:
“The theory of groups of finite order has been rather in a state of stagna-
tion in recent years. If I present here some investigations on groups of finite
order, it is with the hope of raising new interest in the field.” He had good
reasons for that optimistic statement, because at that time he had already pub-
lished or announced most of his major theorems on p-blocks of finite groups
G, where p is a fixed prime divisor of the order |G| of G. They are proved in
Chapter 3. The deepest result is his second main theorem on p-blocks. It
yields an explicit character formula χ(g) for all irreducible characters χ of
G belonging to a p-block B of G with defect group D and all elements g
of G whose p-part gp 	= 1 is conjugate to some non-trivial element of D
in G. Its proof given here employs J. A. Green’s theory of indecomposable
modules of group algebras. It is also presented in this chapter. Brauer’s
second main theorem and Green’s correspondence theorem are then applied
in the proof of Brauer’s famous character formulas for irreducible characters
belonging to p-blocks B of G with cyclic defect groups D of prime order
|D| = p.
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Introduction 3

The most important invariant of a finite group G is its order |G|. In
Chapter 4 the group order formulas of M. Suzuki, J. G. Thompson, G. Frobe-
nius and R. Brauer are proved by means of representation theoretic results
dealt with in Chapters 2 and 3. For groups G having only one conjugacy class
of involutions these formulas do not suffice. Therefore the author proves a new
one in this chapter. It has been used to determine the orders of all (known)
sporadic simple groups having a unique conjugacy class of involutions. The
reader will find examples of such applications in Chapters 9 and 12.

Chapter 4 also contains a new proof for the famous non-simplicity criterion
of Brauer and Suzuki. Together with Brauer’s theorems on 2-blocks it is the
main tool for the proof of Glauberman’s Z∗-Theorem. These results then pave
the way for an elementary proof of the author’s structure theorem of abstract
simple groups: If S is a Sylow 2-subgroup of such a group G, then exactly one
of the following statements holds:

(a) S is dihedral.

(b) S is semi-dihedral.

(c) G has a strongly embedded subgroup.

(d) S has a non-cyclic elementary abelian characteristic subgroup A, and
E = NG(A) has finitely many conjugacy classes zE

i of involutions which
do not fuse in G such that G is generated by E and the centralizers
CG(zi).

The simple groups G satisfying condition (a), (b) or (c) have been classified
long ago by Gorenstein and Walter; Alperin, Brauer and Gorenstein; or Bender
and Suzuki, respectively. These important theorems are stated in Chapter 1
without proof, but with proper references to the existing literature. They have
not been used in the proof of the above-mentioned structure theorem, but are
quoted in the last three chapters, which deal with some important examples.

A main task of the representation theory of finite groups is to provide theo-
retical results and practical methods for the calculation of a concrete character
table of a finite group G of which a finite presentation in terms of generators
and relations is known. In Chapter 5 several deterministic algorithms are de-
scribed that help to find representatives of all conjugacy classes and all char-
acter values of all irreducible characters of a finite permutation group. The
basic tool for that purpose is the recent character formula of M. Weller and
the author. It is proved in Chapter 5.

In Chapter 6 these methods are extended to calculate concrete character
tables of finitely generated matrix groups G ≤ GLn(F ) over finite fields F .
This is done by transforming such a group G into a permutation group. Then
the algorithms of Chapter 5 can be applied.

In general finite simple groups are large objects. Therefore explicit exam-
ples often cannot be studied without the use of computer algebra systems like
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4 Theory of Finite Simple Groups

MAGMA [12] and GAP [40]. In modern mathematics these systems play a
similar role to that of pocket calculators many years ago. Therefore the de-
terministic algorithms presented in Chapters 5 and 6 are set up in such a way
that the applications of the algebra software packages will produce the same
results whenever they start from the same faithful permutation representation
of a finitely presented group G. It is uniquely determined by a given set of
generators of its stabilizer. In all the examples dealt with in this book the
generators of such a stabilizer are documented as short words in the given
generators of G.

The remainder of the book is devoted to the study of the simple groups G
satisfying condition (d) of the structure theorem mentioned above.

An involution z of a finite group G is called 2-central if z belongs to the cen-
ter Z(S) of some Sylow 2-subgroup S of G. Let H be a given finite group with
a center Z(H) of even order. Any finite simple group G having a 2-central
involution z with centralizer CG(z) ∼= H is said to be of H-type. Since all
known proofs of the Brauer–Fowler Theorem are not constructive, it is a natu-
ral question to ask whether there is a practical algorithm which constructs all
finite simple groups of H-type from a given finite presentation of the group H.
Such an algorithm has recently been published by the author. It is described
in Algorithm 7.4.8 of Chapter 7.

Compared to the unknown simple target groups G the given centralizer
H is reasonably small. Therefore one constructs from a given presentation
of H a faithful transitive permutation representation of H. Applying stan-
dard commands of the computer algebra system MAGMA one can determine
a Sylow 2-subgroup S and a maximal non-cyclic elementary abelian char-
acteristic subgroup A of S. Then using Kratzer’s algorithms described in
Chapter 5 one can find representatives of all conjugacy classes of H as short
words in the generators of H. MAGMA also provides generators of the sub-
groups CG(A) = CH(A) and D = NH(A). With this information one has
to study theoretically the possible fusion of the H-conjugacy classes meet-
ing A in the unknown target groups G. Here Thompson’s Transfer Lemma
and Glauberman’s Z∗-Theorem, proved in Chapters 1 and 4, respectively, are
helpful to decide whether |NG(A) : NH(A)| 	= 1. If so, then Algorithm 7.4.8
can be applied. It determines the precise group structure of E = NG(A) and
often a faithful irreducible p-modular representation κ of each target group
G. Hence G is isomorphic to a subgroup κ(G) of GLn(F ), where F is a finite
field of characteristic p > 0 not dividing |D|. Furthermore, Algorithm 7.4.8
provides methods for calculating the concrete character tables of the simple
target groups.

In general, a finite simple group G of H-type is not uniquely determined by
H. If G is a finite simple group of H-type, then any finite simple group X of
H-type which is not isomorphic to G is called a proper H-satellite of G. The
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Introduction 5

finite simple groups with proper simple satellites are dealt with in Chapter 8.
M. Suzuki’s survey article [139] lists the following examples:

G H Simple satellites of G authors
M11 2.S4 PSL3(3) = L3(3) R. Brauer
M24 21+6 : L3(2) L5(2),He Held
J2 21+4 : A5 J3 Janko
A6 D8 L2(7) ∼= L3(2) M. Suzuki
A8 23 : S4 A9 Held
A12 25 : S6 A13, Sp6(2) Yamaki
A4k 22k−1 : S2k A4k+1, k = 4, 5, . . . Kondo

The existing literature does not contain a proof that this list shows all the
known simple groups having a proper simple satellite.

In the first three sections of Chapter 8 the (sporadic) simple Mathieu groups
M11, M12, M22, M23, M24 are dealt with. From J. A. Todd’s abstract defini-
tions [143] of these groups, presentations of the centralizers Hi = CMi

(zi) of
2-central involutions zi of the simple groups Mi, i ∈ {11, 12, 22, 23, 24} are
derived. The satellites L5(2) and Held’s simple sporadic group He are con-
structed from H24 by means of Algorithm 7.4.8. Similar proofs are given for
Janko’s sporadic groups J2 and J3. Finally, Held’s and Yamaki’s Theorems
are proved which classify the simple satellites of the alternating groups A4k

for k = 2, 3. Kondo’s Theorem [93] classifying the simple satellites of A4k for
all k > 3 is stated without proof because of a lack of space.

A finite simple group G is uniquely determined by the centralizer H of
a 2-central involution z ∈ G, if G does not have any non-isomorphic simple
H-satellites. The author’s uniqueness criterion is proved in the last section of
Chapter 7. It is practical because it builds on the fact that one simple group G

of H-type has already been constructed. It also requires to show theoretically
that all finite simple groups G of H-type have (a) the same order |G| = |G|,
and (b) a faithful irreducible representation of minimal degree n over some
finite field of odd characteristic q.

Hypothesis (a) can be satisfied by verifying the sufficient conditions of the
group order formulas presented in Chapter 4. One way to check hypothesis (b)
is to show that all simple groups G of H-type have the same character table
and a q-block B of defect 1 which has a q-modular irreducible representation
of degree n. For an example of such a solution see Chapter 9. Another way
to verify hypothesis (b) is to find a complete classification of all conjugacy
classes of elements x of prime order of any finite simple group G of H-type
and to determine the structure of their normalizers NG(x) = NG(〈x〉), where
〈x〉 denotes the cyclic subgroup of G generated by x. If the conditions of
Brauer’s characterization of characters proved in Chapter 2 can be satisfied
for a suitable n-dimensional complex valued class function χ, then each of these
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6 Theory of Finite Simple Groups

groups G has an irreducible ordinary character of degree χ(1) = n. Finally,
one has to show that χ remains irreducible after reduction modulo the prime q.
In Chapter 12 we apply these methods in a uniqueness proof for Thompson’s
sporadic simple group.

In Chapter 7 we also describe deterministic methods that help to find a
system of representatives of the elements y of prime order of all the unknown
simple target groups G of H-type and the structure of their normalizers NG(y).
Such a normalizer often contains some composition factors Y which are sim-
ple groups. They have to be recognized. If the Sylow 2-subgroups of Y are
dihedral, semi-dihedral or if Y contains a strongly embedded subgroup then Y
is a known simple group characterized by the theorems of Gorenstein–Walter,
Alperin–Brauer–Gorenstein or Bender–Suzuki mentioned before. In all other
cases one has to find a presentation of the centralizer CY (y) of some 2-central
involution y of Y . Then applying Algorithm 7.4.8 one may be able to construct
Y from CY (y). After the completion of this existence proof one has either
to know or to show that Y is uniquely determined by the centralizer CY (y)
of y.

In the last four chapters of this book we demonstrate that the group order
formulas, character formulas, the structure theorem, the algorithms and the
uniqueness criterion proved and developed in the first seven chapters are prac-
tical. This is done by presenting uniform existence and uniqueness proofs for
Janko’s smallest sporadic simple group J1, the Higman–Sims group HS, the
Harada group Ha and the Thompson group Th. Each of those four chapters
has an introduction where the reader will also find some information about the
discovery of these groups and the relevant literature. Whereas in the first three
cases, J1, HS and Ha, the details of the existence and uniqueness proofs are
documented on paper, this is not possible for Th. The reader will find the doc-
umentation of its four generating matrices, its smallest faithful permutation
representation (of degree 143 127 000) and several other technical data in the
attached DVD at the back of this book. There one will also find M. Weller’s
and H. Gollan’s standalone programs for calculating with large permutation
matrices.

The results of the last chapter are due to M. Weller, A. Previtali and the
author. Their recent joint paper [148] solved the long standing open prob-
lem on the uniqueness of the simple group Th originally discovered by J. G.
Thompson [141].

In the literature the reader will find several characterizations of finite sim-
ple groups by centralizers H of involutions. In most cases the authors describe
the structure of H by means of its composition factors and some additional
technical conditions. However, there are several examples where such a de-
scription of H is not sufficient for a uniqueness proof. Janko [82] showed that
there are two non-isomorphic extensions H of the elementary abelian group of
order 16 by the symmetric group S4 which can be realized as the 2-central in-
volution centralizers of the alternating group A10 and the Mathieu group M22,
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Introduction 7

respectively. In order to avoid such ambiguities, in all examples dealt with in
this book the given centralizer H = CG(z) of the particular class of simple
groups G of H-type is well defined by an explicit system of generators and
relations. Whenever it can be proved that all simple groups G of H-type are
isomorphic, then this system of generators and defining relations of H yields
an abstract definition of the simple group G itself.
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1

Prerequisites from group theory

The reader is assumed to be familiar with the basic concepts and results on
finite groups like Sylow’s Theorems and the Theorem of Jordan-Hölder. The
standard textbooks on group theory by B. Huppert [77] and M. Suzuki [135]
treat these subjects in their first chapter and first two chapters, respectively.

In this chapter we give an introduction to that part of finite group theory
which is needed for the study of the structure of abstract finite simple groups
and their ordinary and modular representations. Most of these results are easy
to prove. Therefore we do not hesitate to present proofs whenever possible.
This will help the reader later on to understand the intimate relations between
group theory and representation theory.

In Section 1.1 we restate some basic definitions, notations and results about
finitely presented groups. They will be used throughout the book.

Since finite simple groups are generated by involutions we begin their the-
ory by classifying all non-cyclic 2-groups S which have only one involution.
The classical theorem proved in Section 1.2 states that such a 2-group S is a
generalized quaternion group. This result is needed for the proof of Ph. Hall’s
Theorem given in Section 1.3. Hall’s Theorem classifies all 2-groups S which
do not have any non-cyclic abelian characteristic subgroups. It will be applied
in Chapter 4 where the author’s structure theorem of finite simple groups is
proved. The statement and proof of Hall’s Theorem require the introduc-
tion of the dihedral, semi-dihedral and extra-special 2-groups and the study of
their properties. For that purpose we have to state some results about general
p-groups.

Suppose that the given group H is isomorphic to the centralizer CG(z) of
a 2-central involution z of some unknown simple group G. In order to find
representatives for the conjugacy classes of elements of even order in G one
has to study the fusion of the conjugacy classes of the involutions of H in all
possible target groups G. For that purpose we prove in Section 1.4 the classical
results on fusion, transfer and existence of complements. In particular, D. G.
Higman’s Focal Subgroup Theorem, the Schur–Zassenhaus Theorem, Gaschütz
Theorem and Burnside’s Transfer Theorem are dealt with in detail.

It is a hard group theoretical problem to determine the structure of the
centralizers CG(y) of the elements y of prime order of an unknown target group
G. By hypothesis only the centralizer H = CG(z) of the 2-central involution
z of G is known. Thus we have only information about the centralizers CH(y)
of the elements y of prime order in H. In Section 1.5 we study actions of
solvable groups A on finite groups Q of coprime orders |A| and |Q|. As an
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1.1 Presentations of groups 9

application we obtain a classical result which will help to determine the largest
normal subgroup O(CG(y)) of odd order in the centralizer CG(y). This study
will be continued in Chapter 4 where the Brauer–Wielandt Theorem will be
proved.

Unfortunately, the classification theorems on finite simple groups with a
dihedral or semi-dihedral Sylow 2-subgroup cannot be proved in the frame
of this book. In view of their importance for the statement of the structure
theorem of finite simple groups they are stated in Section 1.6. They also find
important applications in the study of the examples dealt with in the last three
chapters of this book.

Later on we also need the Bender–Suzuki Theorem classifying the simple
groups with a strongly embedded subgroup. This work is explained in the last
section of this chapter.

Whenever a complete proof of a result cannot be given, references to the
literature are provided.

1.1 Presentations of groups

In this section we collect some basic definitions and results about presentations
of abstract groups G. They will be used throughout the text of the book
without further reference.

Definition 1.1.1 Let X = {g1, g2, . . . , gm} be a set of m elements gi of the
group G. Then G is generated by X if every element g ∈ G is expressible as a
finite product of their positive and negative powers gai

i , where ai is an integer.
When a finite product u1u2 . . . un of elements ui ∈ X or u−1

i ∈ X−1 =
{g−1

1 , g−1
2 , . . . , g−1

m } is equal to the identity element 1 of G, then the expression
u1u2 . . . un = 1 is called a relation of the generators gi ∈ X of G.

In order to simplify the notation, one sets r = u1u2 . . . un, and one calls
r = 1 a relation.

A set R of relations r1, r2, . . . , rk satisfied by the generators gi ∈ X of G
is called a set of defining relations of G if every relation r of the generators
gi ∈ X is an algebraic consequence of the relations r1, r2, . . . , rk ∈ R. The
pair 〈X;R〉 is called a presentation of the group G.

Since X is a finite set, the group G is called finitely generated. If it also has
a finite set R of defining relations then G is called a finitely presented group.

Definition 1.1.2 Let X be a finite set with n elements. A group F is called
free on X, if the following two conditions are satisfied:

(a) There is a map α : X → F from X into F .
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10 Prerequisites from group theory

(b) For any map β : X → G from X into an arbitrary group G, there exists
a unique group homomorphism γ : F → G from F into G such that the
following diagram commutes

X

β ���
��

��
��

α �� F

∃!γ����
��

��
�

G

The group F is called a free group of rank n.

Definition 1.1.3 Let F be a free group generated by the finite set X =
{x1, x2, . . . , xn}. A presentation g = y1y2 . . . ym of an element g ∈ F as a
product of some generators yj ∈ X is called a standard factorization if no two
adjacent factors yj and yj+1 of g are inverses of each other.

Remark 1.1.4 Each element of a finitely generated free group F has a uniquely
determined standard factorization, and the number m of its factors yj in the
given set X of generators of F is called the length l(g) of g.

Theorem 1.1.5 For any set X with n elements there is a free group of rank
n. It is uniquely determined by n up to isomorphism.

Proof. See [135], its p. 166.

Theorem 1.1.6 Let X be a finite set of n generators of the group G. Let R
be a set of relations ri = 1 in the generators of X. Let F be the free group on
X with the canonical embedding α : X → F . Let i : X → G be the inclusion
of X in G. Then the following assertions hold:

(a) There exists a unique epimorphism γ : F → G such that the following
diagram commutes:

X

i ���
��

��
��

α �� F

∃!γ����
��

��
�

G

(b) If K = Ker(γ), then R is a defining set of relations for G if and only if
K is the intersection of all normal subgroups N of F containing the set
αR = {αrk | rk ∈ R}.

Proof. See [135], its p. 171.

Definition 1.1.7 Let U be a subgroup of the group G. A set T of represen-
tatives y ∈ G of the right cosets Uy of U in G is called a (right)transversal.
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