
1

Facets of contact geometry

‘After a while the style settles down a bit and it begins
to tell you things you really need to know.’

Douglas Adams,
The Hitch Hiker’s Guide to the Galaxy

This opening chapter is not meant as an introduction in the conventional
sense (if only because it is much too long for that). Perhaps it would be
appropriate to call it a proem, defined by the Oxford English Dictionary
as ‘an introductory discourse at the beginning of a book’. Although some
basic concepts are introduced along the way, the later chapters are largely
independent of the present one. Primarily this chapter gives a somewhat
rambling tour of contact geometry.
Specifically, we consider polarities in projective geometry, the Hamiltonian

flow of a mechanical system, the geodesic flow of a Riemannian manifold, and
Huygens’ principle in geometric optics. Contact geometry is the theme that
connects these diverse topics. This may serve to indicate that Arnold’s claim
that ‘contact geometry is all geometry’ ([15], [17]) is not entirely facetious.
I also present two remarkable applications of contact geometry to questions
in differential and geometric topology: Eliashberg’s proof of Cerf’s theorem
Γ4 = 0 via the classification of contact structures on the 3–sphere, and the
proof of Property P for non-trivial knots by Kronheimer and Mrowka, where
symplectic fillings of contact manifolds play a key role. One of the major
objectives of this book will be to develop the contact topological methods
necessary to understand these results.
The subsequent chapters will not rely substantively on the material pre-

sented here. Therefore, readers interested in a more formal treatment of
contact geometry and topology may skim this proem and refer back to it
for some basic definitions only. But I hope that the present chapter, while
serving as an invitation to contact geometry for the novice, contains material
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2 Facets of contact geometry

that will be of interest even to readers with prior exposure to the subject. In
the survey article [94] I have touched upon some of the themes of this intro-
duction, but without the detailed proofs given here; on the other hand, that
article contains more on the historical development of contact geometry. On
that topic, see also the historical survey by Lutz [170]. As an amuse-gueule
you may enjoy [96].

1.1 Contact structures and Reeb vector fields

Let M be a differential manifold, TM its tangent bundle, and ξ ⊂ TM a
field of hyperplanes on M , that is, a smooth† sub-bundle of codimension 1.
The term codimension 1 distribution is quite common for such a tangent
hyperplane field (and not to be confused with distributions in the analysts’
sense, of course). In order to describe special types of hyperplane fields, it
is useful to present them as the kernel of a differential 1–form.

Lemma 1.1.1 Locally, ξ can be written as the kernel of a differential 1–
form α. It is possible to write ξ = kerα with a 1–form α defined globally on
all of M if and only if ξ is coorientable, which by definition means that the
quotient line bundle TM/ξ is trivial.

Proof Choose an auxiliary Riemannian metric g on M and define the line
bundle ξ⊥ as the orthogonal complement of ξ in TM with respect to that
metric. Then TM ∼= ξ ⊕ ξ⊥ and TM/ξ ∼= ξ⊥. Around any given point p
of M , there is a neighbourhood U = Up over which the line bundle ξ⊥ is
trivial. Let X be a non-zero section of ξ⊥|U and define a 1–form αU on U

by αU = g(X,−). Then clearly ξ|U = kerαU .
Saying that ξ is coorientable is the same as saying that ξ⊥ is orientable

and hence (being a line bundle) trivial. In that case, X and thus also α exist
globally. Conversely, if ξ = kerα with a globally defined 1–form α, one can
define a global section of ξ⊥ by the conditions g(X,X) ≡ 1 and α(X) > 0,
hence ξ is coorientable.

Remark 1.1.2 As a student at Cambridge, I was taught that in Linear
Algebra ‘a gentleman should never use a basis unless he really has to’. By
the same token, one should not use auxiliary Riemannian metrics if one can
do without them. So here is the alternative argument, which may well serve

† The terms smooth and differentiable are used synonymously with C∞; a differential
manifold is a manifold with a choice of differentiable structure. Throughout this book,
manifolds, bundles, vector fields, and related objects, are assumed to be smooth.
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1.1 Contact structures and Reeb vector fields 3

as a warm-up for (slightly less pedestrian) bundle-theoretic considerations
later on.
The quotient bundle TM/ξ and its dual bundle are locally trivial. Thus,

over small neighbourhoods U , one can define a differential 1–form αU as the
pull-back to the cotangent bundle T ∗M of a non-zero section of (TM/ξ)∗|U
under the bundle projection TM → TM/ξ. This 1–form clearly satisfies
kerαU = ξ|U .
If ξ is coorientable, (TM/ξ)∗ admits a global section, and the above con-

struction yields a global 1–form α defining ξ. Conversely, a global 1–form α

defining ξ = kerα induces a global non-zero section of (TM/ξ)∗.

Except in certain isolated examples below, we shall always assume our
hyperplane fields ξ to be coorientable.

One class of hyperplane fields that has received a great deal of attention are
the integrable ones. This term denotes hyperplane fields with the property
that through any point p ∈ M one can find a codimension 1 submanifold
N whose tangent spaces coincide with the hyperplane field, i.e. such that
TqN = ξq for all q ∈ N . Such an N is called an integral submanifold of ξ.
It turns out that ξ = kerα is integrable precisely if α satisfies the Frobenius
integrability condition

α ∧ dα ≡ 0.
In terms of Lie brackets of vector fields, this integrability condition can be
written as

[X,Y ] ∈ ξ for all X,Y ∈ ξ;

here X ∈ ξ means that X is a smooth section of TM with Xp ∈ ξp for all
p ∈ M . A third equivalent formulation of integrability is that ξ is locally
of the form dz = 0, where z is a local coordinate function on M . A good
textbook reference for these facts is Warner [238]. The collection of integral
submanifolds of an integrable hyperplane field constitutes what is called a
codimension 1 foliation. For the global topology of foliations (of arbitrary
codimension) see Tamura [227].
Contact structures are in a certain sense the exact opposite of integrable

hyperplane fields.

Definition 1.1.3 LetM be a manifold of odd dimension 2n+1. A contact
structure is a maximally non-integrable hyperplane field ξ = kerα ⊂ TM ,
that is, the defining differential 1–form α is required to satisfy

α ∧ (dα)n �= 0
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4 Facets of contact geometry

(meaning that it vanishes nowhere). Such a 1–form α is called a contact
form. The pair (M, ξ) is called a contact manifold.

Remark 1.1.4 As a somewhat degenerate case, this definition includes 1–
dimensional manifolds with a non-vanishing 1–form α. The corresponding
contact structure ξ = kerα is the zero section of the tangent bundle.

Example 1.1.5 On R2n+1 with Cartesian coordinates

(x1 , y1 , . . . , xn , yn , z),

the 1–form

α1 = dz +
n∑

j=1

xj dyj

is a contact form. The contact structure ξ1 = kerα1 is called the standard
contact structure on R2n+1. See Figure 1.1 for the 3–dimensional case.

x

y

z

Fig. 1.1. The contact structure ker(dz + x dy).

Remark 1.1.6 Observe that α is a contact form precisely if α ∧ (dα)n is a
volume form on M (i.e. a nowhere vanishing top-dimensional differential
form); in particular, M needs to be orientable. The condition α∧ (dα)n �= 0
is independent of the specific choice of α and thus is indeed a property of
ξ = kerα: any other 1–form defining the same hyperplane field must be of
the form λα for some smooth function λ : M → R \ {0}, and we have

(λα) ∧ (d(λα))n = λα ∧ (λ dα+ dλ ∧ α)n = λn+1α ∧ (dα)n �= 0.
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1.1 Contact structures and Reeb vector fields 5

We see that if n is odd, the sign of this volume form depends only on ξ,
not the choice of α, so the contact structure ξ induces a natural orientation
of M . If M comes equipped with a specific orientation, one can speak of
positive and negative contact structures.

Lemma 1.1.7 In the 3–dimensional case the contact condition can also be
formulated as

[X,Y ]p �∈ ξp at every p ∈M , for all pointwise
linearly independent vector fields X,Y ∈ ξ.

Proof The equation

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]),

which holds for arbitrary 1–forms α and vector fields X,Y on M , see [238,
p. 70], implies

dα(X,Y ) = −α([X,Y ]) for all X,Y ∈ ξ = kerα.

The contact condition α ∧ dα �= 0 in dimension 3 is equivalent to dα|ξ �= 0.
This implies the claim.

Example 1.1.8 The standard contact structure ξ1 on R3 is given by dz +
x dy = 0, hence ξ1 is spanned by the vector fields ∂x and ∂y − x ∂z , with
[∂x, ∂y − x ∂z ] = −∂z �∈ ξ1 .

Here is another fundamental concept of contact geometry.

Lemma/Definition 1.1.9 Associated with a contact form α one has the
so-called Reeb vector field Rα , uniquely defined by the equations

(i) dα(Rα,−) ≡ 0,
(ii) α(Rα ) ≡ 1.

Proof This is essentially a matter of linear algebra. For each point p ∈ M ,
the form dα|Tp M is, by the contact condition α∧(dα)n �= 0, a skew-symmetric
form of maximal rank 2n (for M of dimension 2n + 1). Hence dα|Tp M has
a 1–dimensional kernel (see the section on symplectic linear algebra below)
and equation (i) defines Rα uniquely up to scaling, in other words, a unique
line field 〈Rα 〉 ⊂ TM . (The smoothness of this line field follows from the
smoothness of α.) Again by the contact condition, α is non-trivial on that
line field, so the normalisation condition (ii) specifies a non-vanishing section
of it.
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6 Facets of contact geometry

Example 1.1.10 The Reeb vector field Rα1 of the standard contact form
α1 on R2n+1 equals ∂z .

Notice that one cannot reasonably speak of the Reeb vector field of a
contact structure. The consequences of the fact that different contact forms
defining the same contact structure may have Reeb vector fields with wildly
differing dynamics will be addressed in Example 2.2.5 below.
The name ‘contact structure’ has its origins in the fact that one of the

first historical sources of contact manifolds are the so-called spaces of contact
elements. We shall presently discuss these and other classical examples of
contact manifolds.

1.2 The space of contact elements

In 1872, Lie [159] (see also [160], [161]) introduced the notion of contact
transformation (Berührungstransformation) as a geometric tool for study-
ing systems of differential equations. This may be regarded as the earliest
precursor of modern contact geometry.
Contact transformations constitute a particular case of a local transfor-

mation group defined by the integrals of a system of differential equations.
These transformations were studied extensively during the later part of the
nineteenth century and the beginning of the twentieth century by, amongst
others, Engel, Poincaré, Goursat, and Cartan.
In the present section we phrase in modern language some of the contact

geometric notions that can be traced back to the work of Lie.

Definition 1.2.1 Let B be a smooth n–dimensional manifold. A contact
element is a hyperplane in a tangent space to B. The space of contact
elements of B is the collection of pairs (b, V ) consisting of a point b ∈ B

and a contact element V ⊂ TbB.

Lemma 1.2.2 The space of contact elements of B can be naturally iden-
tified with the projectivised cotangent bundle PT ∗B, which is a manifold of
dimension 2n− 1.

Proof A hyperplane V in the tangent space TbB is defined as the kernel
of a non-trivial linear map uV : TbB → R, and uV is determined by V up
to multiplication by a non-zero scalar. So the space of contact elements at
b ∈ B may be thought of as the projectivisation of the dual space T ∗

b B. It is
standard bundle theory that this fibrewise projectivisation yields a smooth
bundle, see [38].
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1.2 The space of contact elements 7

Next we want to see that the space of contact elements comes equipped
with a contact structure.

Lemma 1.2.3 Write π for the bundle projection PT ∗B → B. For u =
uV ∈ PT ∗

b B, let ξu be the hyperplane in Tu (PT ∗B) such that Tπ(ξu ) is the
hyperplane V in Tπ (u)B = TbB defined by u. Then ξ defines a contact
structure on PT ∗B.

We call this the natural contact structure on the space of contact
elements. Figure 1.2 illustrates the construction for B = R2 . Here PT ∗B =
R2 × RP 1 .

R2

{u = 0}

u

ξu

RP 1

Fig. 1.2. The space of contact elements.

Proof of Lemma 1.2.3 Let q1 , . . . , qn be local coordinates on B, and denote
the corresponding dual coordinates in the fibres of the cotangent bundle
T ∗B by p1 , . . . , pn . This means that the coordinate description of covectors
is given by

(q1 , . . . , qn , p1 , . . . , pn ) =
( n∑
j=1

pj dqj

)
(q1 ,...,qn )

.

Thus, a point

(q1 , . . . , qn , (p1 : . . . : pn ))
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8 Facets of contact geometry

in the projectivised cotangent bundle PT ∗B defines the hyperplane

n∑
j=1

pj dqj = 0

in TbB, where b = (q1 , . . . , qn ). By construction, the natural contact struc-
ture ξ on PT ∗B is defined by

ξ = ker
( n∑
j=1

pj dqj

)
;

notice that this kernel is indeed well defined in terms of the coordinates on
PT ∗B, although the 1–form

∑
pj dqj is not.

In order to verify the contact condition for ξ, we restrict to affine subspaces
of the fibre. Over the open set {p1 �= 0},† for instance, ξ is defined in terms
of affine coordinates p′j = pj/p1 , j = 2, . . . , n, by the equation

dq1 + p′2 dq2 + · · ·+ p′n dqn = 0,

which is exactly the description of the standard contact structure on R2n−1

from Example 1.1.5.

Example 1.2.4 Consider the 2–torus B = T 2 = S1 × S1 and let x, y be
S1–valued coordinates on B. Since B has trivial (co-)tangent bundle, the
space of contact elements of B is B × RP 1 . When identifying RP 1 with
R/πZ with coordinate θ, the natural contact structure can be written as

sin θ dx− cos θ dy = 0.

This is an example of a contact structure that is not coorientable. It lifts
to a coorientable contact structure, given by the same equation, on B × S1 ,
with S1 := R/2πZ.

This standard contact structure on the space of contact elements also plays
a role in the Hamiltonian formalism of classical mechanics, a point to which
we shall return in Section 1.4.

Definition 1.2.5 A contact transformation is a diffeomorphism of a
space of contact elements that preserves the natural contact structure on
that space.

† By this notation I mean the set of points (here: in the projectivised cotangent bun-
dle over a coordinate neighbourhood) that satisfy the inequality in braces. Similar
shorthand notation will be used throughout this text.
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1.2 The space of contact elements 9

We briefly elaborate on the relevance of contact transformations for the
theory of differential equations. Let B = R2 . In this case, contact elements
are also called line elements. Following Lie, we write (x, z) for the Carte-
sian coordinates on R2 , and p for the slope of a line passing through a given
point. The space of line elements whose slope p is finite can be identified
with R3 with coordinates (x, z, p). The equation for lines of slope p is given
by

dz − p dx = 0,

and when regarded as an equation on the space of line elements, it defines
the natural contact structure. A solution z = z(x) of a differential equation
F (x, z, z′) = 0 corresponds to an integral curve

x �−→ (x, z(x), z′(x))

of that contact structure.
Observe that a diffeomorphism

f : (x, z, p) �−→ (x1 , z1 , p1)

of R3 is a contact transformation if and only if

dz1 − p1 dx1 = ρ(dz − p dx)

for some nowhere zero function ρ : R3 → R, that is,

f∗(dz − p dx) = ρ(dz − p dx).

Equivalently, this is saying that f maps all integral curves of the contact
structure dz − p dx = 0 to integral curves of dz1 − p1 dx1 = 0.
Define a function F1 of the transformed coordinates (x1 , z1 , p1) by

F1(x1 , z1 , p1) = F (x, z, p),

i.e. F = F1 ◦ f .

Lemma 1.2.6 Let f be a contact transformation as above. Suppose the
curve x �→ z(x) is a local solution of the differential equation

F (x, z, z′) = 0.

Define a curve in the transformed variables by

(x1(x), z1(x), p1(x)) := f(x, z(x), z′(x)).

If the curve x �→ (x1(x), z1(x)) is regular, i.e. (x′1(x), z
′
1(x)) �= (0, 0) for all x,
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10 Facets of contact geometry

then z1(x) may be regarded as a function of the transformed variable x1(x),
and the curve x1 �→ z1(x1) is a local solution of the transformed equation

F1

(
x1 , z1 ,

dz1
dx1

)
= 0.

Proof The curve x �→ (x, z(x), z′(x)) is an integral curve of the natural
contact structure dz − p dx = 0. Since f is a contact transformation, the
curve

x �−→ (x1(x), z1(x), p1(x)) := f(x, z(x), z′(x))

is an integral curve of the contact structure dz1 − p1 dx1 = 0. It follows
that z′1(x) − p1(x)x′1(x) = 0. With the regularity condition on the curve
x �→ (x1(x), z1(x)) this forces x′1(x) �= 0. We may therefore write x locally
as a function of x1 . Hence

dz1
dx1

(x1) =
dz1
dx
(x(x1)) · dx

dx1
(x1) =

z′1(x(x1))
x′1(x(x1))

= p1(x(x1))

and

F1

(
x1 , z1 ,

dz1
dx1

)
= F1(x1(x), z1(x), p1(x))

= F1 ◦ f(x, z(x), z′(x))
= F (x, z(x), z′(x)) = 0.

This proves the lemma.

Example 1.2.7 Let z : R → R, x �→ z(x) be a strictly convex function (i.e.
z′′ > 0), and assume that x �→ z′(x) defines a diffeomorphism of the real line
onto itself. Then, for any p ∈ R, the function Zp : R → R defined by

Zp(x) := px− z(x)

has a unique maximum at the point x = x(p) given by

dz

dx
(x(p)) = p.

Define a new function z1 of the variable p by

z1(p) = Zp(x(p)) = p · x(p)− z(x(p)).

Then
dz1
dp
(p) = x(p) + p · dx

dp
(p)− dz

dx
(x(p)) · dx

dp
(p) = x(p).

The transformation

f : (x, z, p) �−→ (x1 := p, z1 := px− z, p1 := x)
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