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Foreword

Interconnect model reduction has emerged as one crucial operation for circuit anal-

ysis in the last decade as a result of the phenomenon of interconnect dominance

of advanced VLSI technologies. Because interconnect contributes to a significant

portion of the system performance, we have to take into account the coupling ef-

fects between subcircuit modules. However, the extraction of the coupling renders

many small fragments of parasitics. While the values of the parasitics are small, the

number of fragments is huge and this makes the accumulated effect non-negligible.

If left untreated, the amount of parasitics can gobble up the memory capacity and

consume long CPU time during circuit analysis.

Model reduction transforms a system into a circuit of much smaller size to ap-

proximate the behavior of the original description. Many researchers have con-

tributed to the advancement of the techniques and demonstrated drastic reduction

of the circuit sizes with satisfactory output responses in published reports. Many

of these techniques have also been implemented in software tools for applications.

However, it is important for the users to understand the techniques in order to use

the package properly. To adopt these approaches, we need to inspect the following

features.

1. Efficiency of the reduction: the complexity of the reduction algorithm deter-

mines the CPU time of the model reduction. The size of the reduced circuit affects

the simulation time.

2. Reduction of both model order and terminals of circuits: reduction of terminals

was investigated less in the past and combined terminal and model order reduction

leads to more compact models.

3. Robustness of the algorithms: the numerical stability of the reduction algo-

rithm ensures the robustness of the operation.

4. Structure of the reduced systems: the reduced systems may or may not preserve

important characteristics like symmetry, reciprocity, etc. Those structure charac-

teristics are important for reduction itself and for systems using the models.

5. Realizablility of the reduced system: the reduced system is realizable if it is

passive and we can implement it using electrical elements with positive or neg-

ative values. We can simulate a realizable system with general simulation tools.

Otherwise, we need to check if the reduced system satisfies the constraints of the

simulation package.

6. Passivity of the reduced circuits: the passivity ensures that the simulation

xv
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xvi Foreword

outputs are bounded for bounded inputs even if the reduced circuit is combined

with other passive subcircuits.

7. Error bounds: The error bounds of the output responses provide users with

confidence in the results.

In this book, Professors Sheldon X.-D. Tan and Lei He presented a comprehensive

description of the reduction techniques. They have provided motivations for the

approaches and insights into the algorithms as active researchers in the field. I

found that the treatment of the subject is innovative and the general description is

pleasant to read. The book covers the contemporary results and opens windows on

future research directions in the field.

Chung-Kuan Cheng

Department of Computer Science and Engineering,

The University of Californiat at San Diego
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