
1 The Lagrange Equations of Motion

1.1 Introduction

A knowledge of the rudiments of dynamics is essential to understanding structural
dynamics. Thus this chapter reviews the basic theorems of dynamics without any con-
sideration of structural behavior. This chapter is preliminary to the study of structural
dynamics because these basic theorems cover the dynamics of both rigid bodies and
deformable bodies. The scope of this chapter is quite limited in that it develops only
those equations of dynamics, summarized in Section 1.10, that are needed in subse-
quent chapters for the study of the dynamic behavior of (mostly) elastic structures.
Therefore it is suggested that this chapter need only be read, skimmed, or consulted
as is necessary for the reader to learn, review, or check on (i) the fundamental equa-
tions of rigid/flexible body dynamics and, more importantly, (ii) to obtain a familiarity
with the Lagrange equations of motion.

The first part of this chapter uses a vector approach to describe the motions of
masses. The vector approach arises from the statement of Newton’s second and
third laws of motion, which are the starting point for all the material in this text-
book. These vector equations of motion are used only to prepare the way for the
development of the scalar Lagrange equations of motion in the second part of
this chapter. The Lagrange equations of motion are essentially a reformulation of
Newton’s second law in terms of work and energy (stored work). As such, the
Lagrange equations have the following three important advantages relative to the
vector statement of Newton’s second law: (i) the Lagrange equations are written
mostly in terms of point functions that sometimes allow significant simplification
of the geometry of the system motion, (ii) the Lagrange equations do not nor-
mally involve either external or internal reaction forces and moments, and (iii) the
Lagrange equations have the same mathematical form regardless of the choice of the
coordinates used to describe the motion. These three advantages alone are sufficient
reasons to use the Lagrange equations throughout the remaining chapters of this
textbook.

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-86574-6 - Introduction to Structural Dynamics
Bruce K. Donaldson
Excerpt
More information

http://www.cambridge.org/0521865743
http://www.cambridge.org
http://www.cambridge.org


2 The Lagrange Equations of Motion

1.2 Newton’s Laws of Motion

Newton’s three laws of motion can be paraphrased as (Ref. [1.1]):

1. Every particle continues in its state of rest or in its state of uniform motion in a
straight line unless it is compelled to change that state by forces impressed upon it.

2. The time rate of change of momentum is proportional to the impressed force, and
it is in the direction in which the force acts.

3. Every action is always opposed by an equal reaction.

These three laws are not the only possible logical starting point for the study of the
dynamics of masses. However, (i) these three laws are at least as logically convenient
as any other complete basis for the motion of masses, (ii) historically, they were the
starting point for the development of the topic of the dynamics, and (iii) they are
the one basis that almost all readers will have in common. Therefore they are the
starting point for the study of dynamics in this textbook.

There are features of this statement of Newton’s laws that are not immediately
evident. The first of these is that these laws of motion are stated for a single particle,
which is a body of very, very small spatial dimensions, but with a fixed, finite mass.
The mass of the jth particle is symbolized as mj . The second thing to note is that
momentum, which means rectilinear momentum, is the product of the mass of the
particle and its instantaneous velocity. Of course, mass is a scalar quantity, whereas
velocity and force are vector quantities. Hence the second law is a vector equation.
The third thing to note is that the second law, which includes the first law, is not
true for all coordinate systems. The best that can be said is that there is a Cartesian
coordinate system “in space” for which the second law is valid. Then it is easy to
prove (see the first exercise) that the second law is also true for any other Cartesian
coordinate system that translates at a constant velocity relative to the valid coordinate
system. The second law is generally not true for a Cartesian coordinate system that
rotates relative to the valid coordinate system. However, as a practical matter, it
is satisfactory to use a Cartesian coordinate system fixed to the Earth’s surface if
the duration of the motion being studied is only a matter of a few minutes. The
explanation for this exception is that the rotation of the Cartesian coordinate system
fixed at a point on the Earth’s surface at the constant rate of one-quarter of a degree
per minute, or 0.0007 rpm, mostly just translates that coordinate system at the earth’s
surface in that short period of time. See Figure 1.1(a).

As is derived below, when Newton’s second law is extended to a mass m of finite
spatial dimensions, which is subjected to a net external force of magnitude1 F, then
Newton’s second law can be written in vector form as follows:

F = dP
dt

= m
dv

dt
= ma, (1.1)

where P = mv is the momentum vector, v is the velocity vector of the total mass m
relative to the valid coordinate origin, t is time, and a is the acceleration vector, which
of course is the time derivative of the velocity vector. The velocity vector is not the

1 Vector quantities are indicated by the use of italic boldface type.
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1.2 Newton’s Laws of Motion 3
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Figure 1.1. (a) Valid and invalid coordinate systems for Newton’s second law, both moving at
constant speed. (b) Illustration of the right-hand rule for r × F = M = r F sin αn.

velocity of all points within the mass mrelative to the valid coordinate system. Rather,
it is the velocity of the one point called the center of mass, which is defined below.
Further, note that the mass of the system of particles whose motion is described by
this equation is the mass of a fixed collection of specific mass particles. Hence, even
though the boundary surface that encloses these specified mass particles may change
considerably over time, the mathematical magnitude of the mass term is a constant.
Those mass particles that are included within the mass, or alternately, enclosed by
the boundary surface of the mass system, are defined by the analyst as the “mass
system under study.”

The above basic result, Eq. (1.1), can be derived as follows. Consider a collection
of, that is, a specific grouping of, N particles of total mass m = ∑

mj , where all
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4 The Lagrange Equations of Motion

such sums run from j = 1 to j = N, where N can be a very large number. Again, it
is not essential that there be any particular geometric relationship between the N
particles. Newton’s second law applies to each of these N particles. To write Newton’s
second law in a useful way, let each of these N particles be located by means of
its own position vector r j(t) originating at the origin of a valid coordinate system.
Note that if the time-varying spatial position of the ith particle in terms of the valid
Cartesian coordinates is [xi (t), yi (t), zi (t)], then the position vector can be written
as r i (t) = xi (t)i + yi (t) j + zi (t)k. Since the differential quantity dr i is tangent to the
path of the ith particle, the velocity vector is always tangent to the particle path.
However, because the forces applied to the particle are not necessarily tangent to
the particle path, neither is the acceleration vector, d 2r/dt 2. Thus the path of the
particle need not be straight.

The statement of the second law for the individual ith particle now can be written
as

F ex
i + F in

i = mi r̈ i , (1.2)

where F ex
i is the vector sum of all the forces acting on the ith particle that originate

from sources outside of this collection of N particles (to be called the net external
force acting on the ith particle), and F in

i is the vector sum of all the forces acting
on ith particle that originate from interactions with the other N − 1 particles (i.e.,
the net internal force acting on the ith particle). From Newton’s third law, each of
the N − 1 components of the net internal force acting on the ith particle can be
associated with an equal and opposite force acting on one of the other particles in
the collection of N particles. Hence, summing all such Eqs. (1.2) for the N particles
leads to the cancellation of all the internal forces between the N particles, with the
result ∑

mj r̈ j =
∑

F ex
j ≡ F ex ≡ F.

Again, the total mass m is defined simply as the scalar sum of all the mi . That is
m = ∑

mj . The location of the center of mass of the total mass m is identified by
introducing the center of mass position vector, r(t) (without a subscript). Since this
position vector goes from the coordinate origin to the center of mass, this vector
alone fully describes the path traveled by the center of mass as a function of time.
The center of mass position vector r at any time t is defined so that

mr ≡
∑

mir i .

This definition means that the center of mass position vector is a mass-weighted
average of all the mass particle position vectors. This definition can also be viewed as
an application of the mean value theorem. Differentiating both sides of the definition
of the center of mass position vector with respect to time twice and then substituting
into the previous equation immediately yields Eq. (1.1): F = m r̈ ≡ ma. Again, the
force vector F, without superscripts and subscripts, is the sum of all the external
forces. Note that external forces can arise from only one of two sources: (i) the direct
contact of the boundary surface of the N particles under study with the boundary of
other masses or (ii) the distant action of other masses, in which case they are called
field forces. Gravitational forces are an example of the latter type of action.
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1.3 Newton’s Equations for Rotations 5

1.3 Newton’s Equations for Rotations

A knowledge of the motion of the center of mass can tell the analyst a lot about
the overall motion of the mass system under study. However, that information is
incomplete because it tells the analyst nothing at all about the rotations of the mass
particles about the center of mass. Since rotational motions can be quite important,
this aspect of the overall motion needs investigation.

Just as the translational motion of the center of mass can be viewed as determined
by forces, rotational motions are determined by moments of forces. Recall that the
mathematical definition of a moment about a point, when the moment center is the
origin of the valid coordinate system, is

M ≡ r × F.

Recall that reversing the order of a vector cross product requires a change in sign
to maintain an equality. Further note that it is immaterial where this position vector
intercepts the line of action of the above force vector because the product of the
magnitude of the r vector and the sine of the angle between the r and F vectors is
always equal to the perpendicular distance between (i) the line of action of the force
and (ii) the moment center.

Structural engineers are more familiar with moments about Cartesian coordinate
axes than moments about points. The relation between a moment about a point and a
moment about such an axis can be understood by reference to Figure 1.1(b). This fig-
ure illustrates that the moment resulting from the cross product of the r vector and the
F vector, by the rules of vector algebra, is in the direction of the unit vector n, which
is perpendicular to the plane formed by the r and F vectors. The positive direction of
n is determined by the thumb of the right hand after sweeping the other four fingers
of the right hand from the direction of r, the first vector of the cross product, through
to the direction of F. In terms of α, the angle between these two vectors in the plane
formed by the two vectors

M ≡ r × F ≡ Fr sin α n.

Like any other vector, the vector M has components along the Cartesian coordinate
axes. In terms of the components of the force F and the position vector r, the moment
about a point can be written, using vector algebra, as follows:

M = r × F = (xi + y j + zk) × (Fxi + Fy j + Fzk)

= (yFz − zFy)i + (zFx − xFz) j + (xFy − yFx)k

= Mxi + My j + Mzk.

Considering the last equation, it is clear that moments about axes are simply com-
ponents of moments about points.

When describing the rotation of the mass m, it is often convenient to consider a
reference point P that is other than the valid coordinate origin, which is here called
the point O. See Figure 1.2. Let the this new reference point P move in an arbitrary
fashion relative to the coordinate origin, point O, in a fashion defined by the position
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6 The Lagrange Equations of Motion
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Figure 1.2. Vectors relevant to the rotational motion of a mass. Point P has an arbitrary motion
relative to point O.

vector rP(t). Introduce the vector quantity LPj (t) which is to be called the angular
momentum about point P, or, more descriptively, the moment of momentum of the
mass particle mj about the arbitrary point P. That is, the angular momentum about
point P of the jth mass particle is defined as the vector cross product of (i) the position
vector from point P to the particle mj and (ii) the momentum vector of mj where
the associated velocity vector is that relative to point P rather than the origin of the
coordinate system, point O. Thus, in mathematical symbols, relative to point P, the
angular momentum of the jth particle, and the angular momentum of the total mass
m are, respectively,

LPj ≡ (rj − rP) × mj (ṙj − ṙP) and LP ≡
∑

LPj .

Differentiating both sides of the total angular momentum with respect to time, and
noting that the cross product of the relative velocity vector (ṙ j − ṙ P) with itself is
zero, yields the following result:

dLP

dt
= 0 +

∑
[(rj − rP) × mj (r̈j − r̈P)].

From the original statement of Newton’s second law, it is possible to substitute
in the above equation the net external and internal forces on the jth particle for
mj (d 2/dt 2)r j. The result is

dLP

dt
=

∑ [
(rj − rP) × (

F ex
j + F in

j

) − mj (rj − rP) × r̈P
]
.

The term involving the net internal forces sums to zero because all the component
internal forces are not only equal and oppositely directed, but, by the strong form of
Newton’s third law, they are also collinear. See Exercise 1.1. The remaining portion
of the first term, that involving the net external forces on the N particles, sums to
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1.3 Newton’s Equations for Rotations 7

MP, called the moment about point P of all the external forces acting on the mass m.
The last term in the above sum can be simplified by noting that

∑
mi (r i − rP) × r̈P = −

[
rP

∑
mi −

∑
mir i

]
× r̈P

= −[mrP − mr ] × r̈P

= + m(r − rP) × r̈P.

Thus the final result for the time derivative of the angular momentum of the mass
m is

dLP

dt
= MP − m(r − rP) × r̈P. (1.3a)

In other words, with reference to Figure 1.2,

dLP/dt = MP − m ∗ (position vector from P to the center of mass)

∗ (acceleration vector of point P relative to point O).

Clearly, if point P is coincident with the center of mass (called the center of mass or
CG case, where rP = r), or if the relative position vector rP − r and the acceleration
vector (d 2/dt2)rP are collinear (unimportant because it is unusual), or if point P is
moving at a constant or zero velocity with respect to point O (called, for simplicity,
the fixed point or FP case), then the rotation equation reduces to simply

dLP

dt
= MP if P is a “fixed” point or located at the center of mass. (1.3b)

Note that the above vector equation is the origin of the static equilibrium equations,
which state that “the sum of the moments about any axis is zero.” That is, when the
angular momentum relative to the selected point P is zero or a constant, then the
three orthogonal components of the total moment vector of the external forces acting
on the system about point P are zero. These three orthogonal components are the
moments about any three orthogonal axes.

The above rotational motion equation, Eq. (1.3b) is not as useful as Eq. (1.1), the
corresponding translational motion equation. In Eq. (1.1), the three quantities force,
mass, and acceleration are individually quantifiable. In Eq. (1.3b), while the moment
term is easily understood, the time rate of change of the angular momentum needs
further refinement so that perhaps it too can be written as some sort of fixed mass type
of quantity multiplied by some sort of acceleration. Recall that for the mass system m,
the total angular momentum relative to point P, is defined as the sum of the moments
of the momentum of all the particles that comprise the mass m. That is, again

LP =
∑

(r i − rP) × mi (ṙ i − ṙP).

From the previous development, that is, Eqs. (1.3a,b), there are two simplifying
choices for the reference point P: the FP (so-called fixed point) case and the CG
(center of mass) case, where the time derivative of the angular momentum is equal
to just the moment about point P of all the external forces. First consider the FP case,
where point P has only a constant velocity relative to the coordinate origin, point O.
Then, from Exercise 1.1, either point P or point O is the origin of a valid Cartesian
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8 The Lagrange Equations of Motion

coordinate system. Since these two points are alike, for the sake of simplicity, let the
reference point P coincide with the origin of the coordinate system, point O. Again,
this placement of point P at point O does not compromise generality within the FP
case because when point P is only moving at a constant velocity relative to point O,
point P can also be an origin for a valid coordinate system. Then with rP = 0, and
because the ei vectors of Figure 1.2 originate at the center of mass, the total angular
momentum becomes

LF P =
∑

r i × mi ṙ i =
∑

(r + ei ) × mi (ṙ + ėi )

= r × ṙ
(∑

mi

)
+ r ×

(∑
mi ėi

)

+
(∑

mi ei

)
× ṙ +

∑
(ei × mi ėi )

= r × m ṙ +
∑

(ei × mi ėi ). (1.4a)

To explain why the second and third terms of the above second line are zero, recall
the definition of the center of mass position vector, r. That mean value definition
is mr ≡ ∑

mir i . Since r i = r + ei , mr ≡ ∑
mir+

∑
mi ei . Since r is not affected by

the summation over the N particles, it can be factored out of the first sum on the
above right-hand side. The result is mr ≡ mr+

∑
mi ei or 0 = ∑

mi ei . Furthermore,
because the mass value of each particle is a constant, the time derivative of this last
equation shows that 0 = ∑

mi ėi . This is just an illustration of the general fact that
first moments, that is, multiplications by distances raised to the first power, of mass
or area, or whatever, about the respective mean point are always zero. Multiplica-
tions of mass by distances with exponents other than one lead to terms which are
generally not zero.

In the above FP equation, Eq. (1.4a), for the angular momentum, the first term
depends only on the motion of the center of mass relative to the Cartesian coordinate
origin. Even if the mass is not rotating relative to the Cartesian coordinate origin,
this term is generally not zero. The second part of the angular momentum exists even
if the center of mass is not moving. This second part accounts for the spin of the mass
about its own center of mass.

The CG case is where the reference point P is located at the center of mass, point C,
rather than at the coordinate origin, point O, as in the FP case. In this CG case, r = r P

and r i − rP = ei . Substituting these vector relationships into the expression for LP

immediately leads to the same result for the angular momentum, as was obtained for
the FP case, except that the first of those two terms is absent. Hence the mathematics
of the CG case are included within that of the FP case, and therefore the CG case
does not need a parallel development.

1.4 Simplifications for Rotations

Since Newton’s second law is a vector equation, it has been convenient to derive its
rotational corollaries by use of vector algebra in three-dimensional space. However,
it is no longer convenient to pursue the subject of rotations using three-space vector
forms because, in general, the rotations themselves about axes in three dimensions
(as opposed to moments about axes in three dimensions) are not vector quantities.
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1.4 Simplifications for Rotations 9
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Figure 1.3. Proof that, generally, rotations are not vectors because the order of the rotations
is not irrelevant.

For a quantity be classified as a vector, the order of an addition has to be immaterial;
that is, it is necessary that A+ B = B + A, which is called the commutative law for
vector addition. In contrast, as Figure 1.3 illustrates, the order of addition of rota-
tions in three-space can greatly change the final orientation of the mass whenever
the rotational angles involved are large, like the 90◦ angles selected for Figure 1.3.
There are two simple ways of circumventing this difficulty. The first simplifying
approach is to restrict the rotational motion equations to a single plane. In a sin-
gle plane, all rotations simply add or subtract as scalar quantities. This is a wholly
satisfactory approach for most of the illustrative pendulum problems considered in
the next chapter. The second option for simplification is to retain rotations about
more than one orthogonal axis but limit all those rotations to being small. Here
“small” means that the tangent of the angle is closely approximated by the angle
itself.2 As is explained in Ref. [1.2], p. 271, in contrast to larger angles, angles about
orthogonal axes of these small magnitudes can be added to each other as vector
quantities. This approach of restricting the rotations to either being small or lying in
a single plane would not be adequate for formulating a general analysis of the motion
of bodies of finite size, which is not a present concern. However, this is a satisfactory
approach for almost all structural dynamics problems because structural rotations
due solely to the vibrations of a flexible structure are almost always less than 10◦

or 12◦. Therefore, to repeat and thus underline this important point, for the present
purposes of structural dynamics, it is often satisfactory only to look at rotations in a
single plane or restrict the analysis to small rotations, which can be added vectorially.

To further the discussion, consider all rotations confined to a single plane that,
for the sake of explicitness, is identified as the z plane. To reflect the change from
three to two dimensions, the notation FP for a fixed point in three-dimensional space,
transitions to FA for a fixed axis perpendicular to the zplane. This simplification from
a general state of rotations to those only about an axis paralleling the zaxis allows the
introduction of a pair of convenient unit vectors in the z plane called p1 and q1 such
that p1 is directed from the origin toward the center of mass and q1 is rotated 90◦

counterclockwise from p1. These two unit vectors rotate in the z plane as the center

2 For example, 10◦ (expressed in radians) and the tangent of 10◦ differ by only 1%.
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10 The Lagrange Equations of Motion
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Figure 1.4. (a) The relationship between the rotating unit vectors and the fixed unit vectors,
i and j. (b) Use of unit vectors to locate the ith mass particle.

of mass moves in that plane. In terms of the fixed-in-space Cartesian coordinate unit
vectors, i, j, as shown in Figure 1.4(a),

p1 = +i cos φ1 + j sin φ1

q1 = −i sin φ1 + j cos φ1.

Again, even though p1 and q1 have a fixed unit length, they have time derivatives
because their orientation in the z plane varies with time as the angle φ changes
with time. The above equations show that the time derivatives of these rotating unit
vectors are

ṗ1 = φ̇1q1 q̇1 = −φ̇1 p1.

This unit vector pair p, q can be used with both the position vector for the center
of mass and the vector from the center of mass to the ith mass particle. That is, as
illustrated in Figure 1.4(b),

r = r p1 and ei = ei p2i .
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