
1
Introduction

Privately, [Rayleigh] often quoted with relish a saying attributed to Dalton when
in the chair at a scientific meeting: “Well, this is a very interesting paper for
those that take any interest in it”.

(Strutt [1157, p. 320])

1.1 What is ‘multiple scattering’?
The mathematics of the full treatment may be altogether beyond human power
in a reasonable time; nevertheless � � �

(Heaviside [489, p. 324])

‘Multiple scattering’ means different things to different scientists, but a general
definition might be ‘the interaction of fields with two or more obstacles’. For example,
a typical multiple-scattering problem in classical physics is the scattering of sound
waves by two rigid spheres. Further examples, such as the scattering of spherical
electron waves by a cluster of atoms, can be found in condensed-matter physics [1379,
168, 422, 424, 423]. Many other examples will be discussed in this book.
The waves scattered by a single obstacle can be calculated in various well-known

ways, such as by the method of separation of variables, T -matrix methods or integral-
equation methods. All of these methods will be discussed in detail later.
If there are several obstacles, the field scattered from one obstacle will induce

further scattered fields from all the other obstacles, which will induce further scattered
fields from all the other obstacles, and so on. This recursive way of thinking about
how to calculate the total field leads to another notion of multiple scattering; it can
be used to actually compute the total scattered field – each step is called an order of
scattering. In 1893, Heaviside [489, p. 323] gave a clear qualitative description of
this ‘orders-of-scattering’ process.

1.1.1 Single scattering and independent scattering

In his well-known book on electromagnetic scattering, van de Hulst [1233, §1.2]
considers two classifications, namely single scattering and independent scattering.
Let us review his definitions of these ideas.

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521865549 - Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles
P. A. Martin
Excerpt
More information

http://www.cambridge.org/0521865549
http://www.cambridge.org
http://www.cambridge.org


2 Introduction

1.1.1.1 Single scattering
This is the simplest approximation, in which the effects of multiple scattering are
ignored completely: ‘the total scattered field is just the sum of the fields scattered
by the individual [obstacles], each of which is acted on by the [incident] field in
isolation from the other [obstacles]’ [111, p. 9]. This approximation is used widely; it
is only expected to be valid when the spacing is large compared with both the size of
the obstacles and the length of the incident waves. Indeed, with these assumptions,
higher-order approximations can be derived [1382, 1383, 1381] and these can be
effective [511]. However, there are many instances where multiple scattering is
important; for some natural examples, see Bohren’s fascinating book [109] and his
related paper [110]. Thus, in atmospheric physics, the single-scattering approximation
is not justified, ‘for example, by clouds, where multiple scattering can be appreciable’
[111, p. 9].

1.1.1.2 Independent scattering
When waves interact with several obstacles, a ‘cooperative effect’ may occur. This
could be constructive interference, leading to unexpectedly large fields, such as
can happen with a periodic arrangement of identical scatterers as in a diffraction
grating or a crystal lattice. Alternatively, there could be destructive interference,
leading to unexpectedly small fields, such as can happen with a random arrangement
of scatterers. These are examples of dependent scattering: in theory, one ‘has to
investigate in detail the phase relations between the waves scattered by neighboring
[scatterers]’ [1233, p. 4]. Thus, the ‘assumption of independent scattering implies
that there is no systematic relation between these phases’ [1233, p. 5].
The notions of single scattering and independent scattering need not be separated.

For example, the authors of [866] consider

only independent scattering, randomly positioned particles. This means that par-
ticles are separated widely enough, so that each particle scatters light in exactly
the same way as if all other particles did not exist. Furthermore, there are no
systematic phase relations between partial electromagnetic waves scattered by
different particles, so that the intensities � � �of the partial waves can be added
without regard to phase. In other words, we will assume that each particle is in
the far-field zone of all other particles, and that scattering by different particles
is incoherent.

(Mishchenko et al. [866, p. 4])

The authors go on to quantify what ‘separated widely enough’ means: ‘Exact scat-
tering calculations for randomly oriented two-sphere clusters composed of identical
wavelength-sized spheres suggest that particles can scatter independently when the
distance between their centers is as small as four times their radius [868]’ [866, p. 5].
This is consistent with van de Hulst [1233, p. 5]: ‘Early estimates have shown that
a mutual distance of 3 times the radius is a sufficient condition for independence’.
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1.1 What is ‘multiple scattering’? 3

1.1.2 Scattering by N obstacles

Suppose that we have N disjoint obstacles, Bi, i = 1�2� � � � �N . The boundary of Bi

is Si. A given wave is incident upon the N obstacles, and the problem is to calculate
the scattered waves.
We assume that we know everything about every obstacle: location, shape, orienta-

tion and boundary condition; if the obstacles are penetrable, so that waves can travel
through them, we assume that we know the internal composition. There are many
situations where all of this information is not available; for example, the obstacles
might be located randomly.
Mathematically, the exact (deterministic) multiple-scattering problem is easily

formulated: it is an exterior boundary-value problem (with a radiation condition at
infinity) where the boundary is not simply-connected. However, the problem is not
easy to solve, due mainly to the complicated geometry: hence Heaviside’s pessimistic
comment. Another comment, in a similar vein, was made by van de Hulst [1233]:

Multiple scattering does not involve new physical problems, � � � � Yet the problem
of finding the intensities inside and outside the cloud [of N scatterers] is an
extremely difficult mathematical problem.

(van de Hulst [1233, p. 6])

This attitude led naturally to single-scattering approximations, as mentioned above.
One scatters the incident wave from the ith obstacle (ignoring the presence of the
other obstacles), and then sums over i. Indeed, van de Hulst’s book and [276] are
devoted entirely to single scattering.
At the other extreme, one may attempt to solve the N -body scattering problem

directly, perhaps by setting up a boundary integral equation over

S =
N⋃
j=1

Sj� (1.1)

see Chapter 5. Analytically, although ‘it would be esthetically preferable to treat
the [N -body] configuration as a unit, this approach seems limited to certain special
problems’ [1196, p. 42]. Computationally, this direct approach can be expensive,
especially for problems involving many three-dimensional obstacles.
In the first comprehensive review of the literature on multiple scattering, Twersky

opined that

it is convenient in considering multiple scattering, to assume that solutions for the
component scatterers when isolated are known, and that they may be regarded
as “parameters” in the more general problem.

Thus, one seeks representations for scatteringbymanyobjects inwhich theeffects
of the component scatterers are “separated” from the effects of the particular con-
figuration (or statistical distribution of configurations) in the sense that the
forms of the results are to hold independently of the type of scatterers involved.

(Twersky [1198, p. 715])

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521865549 - Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles
P. A. Martin
Excerpt
More information

http://www.cambridge.org/0521865549
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

Similarly, in the context of hydrodynamics (where water waves interact with immersed
structures, such as neighbouring ships, wave-power devices or elements of a single
larger structure), Ohkusu wrote:

For the purpose of calculating hydrodynamic forces � � � � it is essential that only
the hydrodynamic properties of each element be given. A method having such a
merit will facilitate the calculation for a body having many elements and may be
applied to the design arrangement of the elements.

(Ohkusu [927, p. 107])

In other words, assuming that we know everything about scattering by each obstacle
in isolation, how can we use this knowledge to solve the multi-obstacle problem?
The best way is to use a ‘self-consistent’ method. In the next section, we describe
such a method in general terms.

1.1.3 Self-consistent methods

A self-consistent method

assumes that a wave is emitted by each scatterer of an amount and directionality
determined by the radiation incident on that scatterer (the effective field). The
latter is to be determined by adding to the incident beam the waves emitted
by all other scatterers, and the waves emitted by those scatterers are in turn
influenced by the radiation emitted by the scatterer in question. � � �The self-
consistent procedure is not an expansion in primary, secondary, tertiary waves,
etc. The field acting on a given scatterer, or emitted by it includes the effects of
all orders of scattering.

(Lax [687, pp. 297–298])

Specifically, write the total field as

u= uinc+
N∑
j=1

uj
sc� (1.2)

where uinc is the given incident field and uj
sc is the field scattered (‘emitted’) by the

jth scatterer. Define the ‘effective’ or ‘external’ or ‘exciting field’ by

un ≡ u−un
sc = uinc+

N∑
j=1
j �=n

uj
sc� (1.3)

it is the ‘radiation incident on [the nth] scatterer’ in the presence of all the other
scatterers.
Now, as the problem is linear, it must be possible to write

uj
sc = �juj� (1.4)
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1.1 What is ‘multiple scattering’? 5

where �j is an operator relating the field incident on the jth scatterer, uj , to the field
scattered by the jth scatterer, uj

sc. Hence, (1.3) gives

un = uinc+
N∑
j=1
j �=n

�juj� n= 1�2� � � � �N� (1.5)

or, equivalently,

un
sc = �n

{
uinc+

N∑
j=1
j �=n

uj
sc

}
� n= 1�2� � � � �N� (1.6)

If one could solve (1.5) for un or (1.6) for un
sc, n= 1�2� � � � �N , the total field would

then be given by

u= uinc+
N∑
j=1

�juj (1.7)

or (1.2), respectively.
The derivation of (1.5) given here follows [1193, Chapter 6, §3]; see also [1191,

Chapter 7, §2]. Its simplicity is somewhat illusory, because we have not clearly
defined the operator �j; also, we have not indicated where (1.5) or (1.6) is required
to hold in space. Nevertheless, we have given an abstract framework within which a
variety of concrete methods can be developed.
The general scheme leading to (1.5) and (1.7) is often called the Foldy–Lax self-

consistent method. Foldy [354] used a special case of the method for ‘isotropic point
scatterers’; see Section 8.3 for a detailed description. Lax [687] used the general
scheme, with a certain prescription for �j; see [687, §III]. We will see several
specific realisations later, including the T -matrix methods developed in Chapter 7.
For simple geometries, such as circular cylinders or spheres, a self-consistent

method is easily realised. One combines separated solutions of the Helmholtz equa-
tion (multipoles); a necessary ingredient is an addition theorem for expanding mul-
tipoles centred at one origin in terms of similar multipoles centred on a different
origin. This old but useful method will be developed in detail in Chapter 4. The
method itself goes back to a paper of Lord Rayleigh, published in 1892; we discuss
this next.

1.1.4 Rayleigh’s paper of 1892

In his paper ‘On the influence of obstacles arranged in rectangular order upon
the properties of a medium’ [1009], Rayleigh considered potential flow through a
periodic rectangular array of identical circular cylinders. As a special case of his
analysis, let us consider an infinite square array of rigid cylinders of radius a with
centres at �x� y� = �mb�nb�, where m and n are integers and b > 2a; see Fig. 1.1.
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6 Introduction

P

Q
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y

Fig. 1.1. Rayleigh’s problem: an infinite square array of circles.

The ambient flow has potential V =Hx. In Rayleigh’s words [1009, p. 482]: ‘If we
take the centre of one of the cylinders P as origin of polar coordinates, the potential
external to the cylinder may be expanded in the series

V = A0+ �A1r+B1r
−1� cos�+ �A3r

3+B3r
−3� cos3�+· · · � ’ (1.8)

where � is measured from the x-axis. Symmetry implies that V −A0 must be an odd
function of x and an even function of y; these conditions lead to the form of the
expansion (1.8). Imposing the boundary condition �V/�r = 0 on r = a gives

Bn = a2nAn� n= 1�3�5� � � � � (1.9)

Next [1009, p. 483]: ‘The values of the coefficients A1, B1, A3, B3 � � � are neces-
sarily the same for all the cylinders, and each may be regarded as a similar multiple
source of potential. The first term A0, however, varies from cylinder to cylinder, as
we pass up or down the stream’.
At this stage, we have obtained one condition relating An and Bn, namely (1.9), but

we need another. To find it, Rayleigh begins as follows [1009, p. 483]: ‘The potential
V at any point may be regarded as due to external sources at infinity (by which the
flow is caused) and to multiple sources situated on the axes of the cylinders. The
first part may be denoted by Hx’.
Then, Rayleigh proceeds [1009, p. 484] ‘by equating two forms of the expression

for the potential at a point x� y near P. The part of the potential due to Hx and to the
multiple sources Q (P not included) is

A0+A1r cos�+A3r
3 cos 3�+ � � � �
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1.1 What is ‘multiple scattering’? 7

or, if we subtract Hx, we may say that the potential at x� y due to multiple sources
at Q is the real part of’

A0+ �A1−H�z+A3z
3+A5z

5+· · · � with z= x+ iy� (1.10)

Continuing: ‘But if x′� y′ are the coordinates of the same point when referred to the
centre of one of the Q’s, the same potential may be expressed by’

�	B1z
′−1+B3z

′−3+· · · 
 with z′ = x′ + iy′� (1.11)

‘the summation being extended over all the Q’s. If ��� be the coordinates of a Q
referred to P, x′ = x−�, y′ = y−�; so that’ Bnz

′−n = Bn�z−z0�
−n with z0 = �+ i�.

Then, the binomial theorem gives

z′−n = �−z0�
−n

{
1+n�z/z0�+

1
2
n�n+1��z/z0�

2+· · ·
}
� (1.12)

Hence [1009, p. 484]: ‘Since (1.10) is the expansion of (1.11) in rising powers of
x+ iy [= z], we obtain, equating term to term,’

H−A1 =B1�2+3B3�4+5B5�6+· · ·

−3!A3 = 3!B1�4+
1
2
5!B3�6+· · ·

−5!A5 = 5!B1�6+
1
2
7!B3�8+· · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.13)

‘and so on, where

�2n = ���+ i��−2n� ’ (1.14)

‘the summation extending over all the Q’s.’ (As �2s+1 = 0, we also obtain A0 = 0.)
Thus, the system comprising (1.9) and (1.13) can now be solved, in principle, for

An and Bn. Note that, for two-dimensional potential flow (Laplace’s equation), the
addition theorem amounts to an application of the binomial theorem, (1.12). Note
also that the situation becomes more complicated when the periodicity is destroyed,
because then the coefficents An and Bn will vary from cylinder to cylinder.

Rayleigh [1009] also considered flow past a rectangular three-dimensional array
of identical spheres, and (briefly) low-frequency sound waves through rectangular
arrays of rigid cylinders or spheres. For further comments, see [1205, §(6)], [648,
§2] and [888, §3.1].

1.1.5 Kasterin, KKR and the electronic structure of solids

Shortly after Rayleigh’s paper [1009] was published, a graduate student at
Moscow University, N.P. Kasterin, set out to apply [Rayleigh’s] ideas to a gen-
uine scattering problem. He chose the relatively simple phenomenon of reflec-
tion and refraction of low-frequency sound by an orthorhombic grid of hard
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8 Introduction

spheres. � � �Kasterin’s results were published in his 1903 Moscow thesis. A pre-
liminary report � � � came out in 1898.

(Korringa [648, p. 346])

As a special case of Kasterin’s analysis, consider an infinite planar square array of
spheres of radius a with centres at �x� y� z�= �mb�nb�0�, where m and n are integers
and b > 2a. We take the incident field as a plane wave at normal incidence to the
array, uinc = eikz.

Generalising (1.8), the total field at r near the jth sphere can be expanded as

u�r�=∑
n�m

{
dm
nj
̂

m
n �rj�+ cmnj


m
n �rj�

}
� (1.15)

where r= rj +bj and r= bj is the sphere’s centre. Here, 

m
n �rj� are outgoing multi-

poles (separated solutions of the Helmholtz equation in spherical polar coordinates),
singular at rj = 0 (r= bj) and 
̂m

n �rj� are regular spherical solutions. (Precise defini-
tions will be given later.) The coefficients dm

nj and cmnj correspond to Rayleigh’s An

and Bn, respectively. Evidently, the periodic geometry and the simple incident field
imply that

dm
nj ≡ dm

n and cmnj ≡ cmn �

the coefficients are the same for every sphere.
Applying the boundary condition �u/�r = 0 on r = a yields one relation between

dm
n and cmn , namely

dm
n = �nc

m
n � (1.16)

where �n is a known constant (see Section 4.6).
The effective field incident on the jth sphere is∑

n�m

dm
n 
̂

m
n �rj�� (1.17)

This must be the same as the sum of the actual incident field and the scattered fields
emitted by all the other spheres, namely

eikz+∑
l

l �=j

∑
n�m

cmn 

m
n �rl�� (1.18)

Equating (1.17) and (1.18) in a neighbourhood of the jth sphere gives a second
relation between dm

n and cmn . This solves the problem, in principle.
To proceed further, suppose that we have the expansions

eikz =∑
n�m

emn 
̂
m
n �rj� (1.19)

and


m
n �rl�=

∑
���

Sm�
n� �bj −bl� 
̂

�
� �rj�� (1.20)
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1.1 What is ‘multiple scattering’? 9

we will discuss emn and Sm�
n� �b� shortly. Then, equating (1.17) and (1.18), using (1.16),

(1.19) and (1.20), we obtain

�nc
m
n −∑

���

c��
∑
l

l �=j

S�m
�n �bj −bl�= emn �

In this linear system of algebraic equations, we can take j = 0 without loss of
generality.
The Rayleigh–Kasterin method, described above, is rigorous, and it can be gener-

alised in various ways. It has been used to obtain numerical solutions for many related
problems with (infinite) periodic geometries. For example, see [727] for acoustic scat-
tering by a single periodic row of circles, and see [984] for two-dimensional elastic
waves around a square array of circular cavities; see also [888, Chapter 3].
The Rayleigh–Kasterin method was also adapted to problems in solid-state physics.

In that context, it is known as the KKR (Korringa–Kohn–Rostoker) method; see, for
example, [1379, §10.3], [775, 424] or [423, §6.8]. For a clear presentation of the
two-dimensional KKR method (for sound waves around an infinite square array of
soft circles), see [90].
For historical background, including a detailed description of Kasterin’s work,

see [648].
To generalise Rayleigh’s method to a non-periodic configuration, consider the

problem of acoustic scattering by two spheres (see Section 1.3 for background
information). Suppose that the spheres are centred at O1 and O2. Write the scattered
field usc as a superposition of outgoing multipoles 
m

n , one set singular at O1 and the
other set singular at O2:

usc =
∑
n�m

	am
n 


m
n �r1�+bmn 
m

n �r2�
 �

Then, determine the coefficients am
n and bmn by applying the boundary condition on

each sphere in turn: this requires the expansion of 
m
n �r2� in terms of regular spherical

solutions centred on O1, 
̂
m
n �r1�. Thus, we need the addition theorem


m
n �r2�=

∑
���

Sm�
n� �b� 
̂

�
� �r1��

which is valid for r1 < b, where r1 = �r1�, r2 = r1 + b and b = �b� is the distance
between O1 and O2. The matrix S = �Sm�

n� � is called the separation matrix or the
translation matrix or the propagator matrix. It is an important ingredient in several
exact theories of multiple scattering. We will give much attention to various methods
for calculating S, with emphasis on acoustic problems (Helmholtz equation) in two
(Chapter 2) and three (Chapter 3) dimensions.
We also need expansions of the incident field, similar to (1.19); these will be

derived too.
Kasterin did not have explicit expressions for the matrix S: we can see that the

expansions (1.19) and (1.20) are analogous to Taylor expansions about rj = 0, and
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10 Introduction

so the coefficients could be obtained by applying appropriate differential operators.
This is one of several methods for constructing S that we shall develop later.

1.2 Narrowing the scope: previous reviews and omissions

Multiple scattering is a huge subject with a huge literature. For an extensive review up
to 1964, see [1198] and the supplement [163]. For a collection of articles surveying
many aspects of scattering (including theory, computation and application), see the
957-page volume edited by Pike & Sabatier [977].
There is a 1981 survey by Oguchi on ‘multiple scattering of microwaves or

millimeter waves by an assembly of hydrometeors’ [924, p. 719]. Two approaches
are reviewed. One is the Foldy–Lax–Twersky integral equation method, introduced
by Foldy in 1945 [354] and generalised by Lax [687, 688] and Twersky [1200, 1201].
The second approach is based on the radiative transfer equation; this may be regarded
as the final stage in a larger calculation:

the treatment of light scattering by a cloud of randomly positioned, widely sepa-
rated particles can be partitioned into three steps: (i) computation of the far-field
scattering and absorption properties of an individual particle � � � (ii) computa-
tion of the scattering and absorption properties of a small volume element
containing a tenuous particle collection by using the single-scattering approx-
imation; and (iii) computation of multiple scattering by the entire cloud by
solving the radiative transfer equation supplemented by appropriate boundary
conditions.

(Mishchenko et al. [870, p. 7])

We do not consider radiative transfer further, but see [1190] for more information.
In 2000, Tourin et al. [1182] reviewed a variety of applications, including theory

and experiment: in one example of note, sound waves in water are scattered by a
random collection of 1000 identical parallel steel rods.
Major areas not covered in this book include the following.

(i) Scattering by an infinite number of identical obstacles arranged in some periodic
manner, such as in a row or in a regular lattice. For plane-wave scattering, problems
of this type can be reduced to a problem in a single ‘unit cell’ (for lattices) or to
waveguide problems (for a row of equally-spaced obstacles). The prototype for
this reduction, of course, is Rayleigh’s paper [1009], discussed in Section 1.1.4.
Larsen [684] gave an early review of scattering by periodic rows of identical

cylinders. For scattering by a semi-infinite periodic row of cylinders, see [859,
502, 501, 861, 729].

(ii) Scattering by an infinite rough surface. For such problems, one has to solve
a governing partial differential equation (such as the Helmholtz equation) in
the region y > f�x�, where y = f�x�, −� < x < �, is the rough surface with
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