Physics of Charged Macromolecules

Charged molecules percolate all aspects of our modern lives including food, health care, and water-based technologies. As a concise introduction to the physics of charged macromolecules, this book covers the basics of electrostatics as well as cutting-edge modern research developments. This accessible book provides a clear and intuitive view of concepts and theory, and features appendices detailing mathematical methodology. Supported by results from real-world experiments and simulations, this book equips the reader with a vital foundation for performing experimental research. Topics include living matter and synthetic materials including polyelectrolytes, polyzwitterions, polyampholytes, proteins, intrinsically disordered proteins, and DNA/RNA. Serving as a gateway to the growing field of charged macromolecules and their applications, this concept-driven book is a perfect guide for students beginning their studies in charged macromolecules, providing new opportunities for research and discovery.

Murugappan Muthukumar is the Wilmer D. Barrett Professor of Polymer Science and Engineering at the University of Massachusetts Amherst. He is a fellow of the American Physical Society and a recipient of the Dillon Medal and the Polymer Physics Prize of the American Physical Society, as well as the American Chemical Society Polymer Chemistry Award.

Cambridge University Press & Assessment 978-0-521-86487-9 — Physics of Charged Macromolecules Murugappan Muthukumar Frontmatter <u>More Information</u>

Physics of Charged Macromolecules

Synthetic and Biological Systems

MURUGAPPAN MUTHUKUMAR

University of Massachusetts Amherst

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521864879

DOI: 10.1017/9781139046749

© Murugappan Muthukumar 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Muthukumar, Murugappan, author. Title: Physics of charged macromolecules : synthetic and biological systems / Murugappan Muthukumar. Description: Cambridge ; New York, NY : Cambridge University Press, 2023. | Includes bibliographical references. Identifiers: LCCN 2022025102 | ISBN 9780521864879 (hardback) | ISBN 9781139046749 (ebook) Subjects: LCSH: Macromolecules – Electric properties. Classification: LCC QD381.9.E38 M88 2023 | DDC 547/.70457–dc23/eng20221123 LC record available at https://lccn.loc.gov/2022025102

ISBN 978-0-521-86487-9 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

Cambridge University Press & Assessment 978-0-521-86487-9 — Physics of Charged Macromolecules Murugappan Muthukumar Frontmatter <u>More Information</u>

Contents

Prefc Ackn	ice owledgm	eents	page xii	
Induce				
Intro		o Gnarged Macromolecules]	
1.1	Genera	al Premise	1	
1.2	Chain	Chain Connectivity and Long-Ranged Topological Correlation		
1.3	Scales	of Energy, Length, and Time in Charged Systems	6	
1.4	Confluence of Electrostatic and Topological Correlations			
	1.4.1	Similarly Charged Macromolecules Can Attract Each Other		
	1.4.2	Ordinary–Extraordinary Transition	1(
	1.4.3	Reentrant Precipitation	11	
	1.4.4	Encapsulation of DNA via Complexation	12	
	1.4.5	Gel Swelling	12	
	1.4.6	Outlook	14	
Mode	els of Unc	harged Macromolecules	15	
2.1	Flexible Chains			
	2.1.1	Mean Square End-to-End Distance	17	
	2.1.2	Radius of Gyration	17	
	2.1.3	Segment Density Profile	17	
	2.1.4	Probability of End-to-End Distance	18	
	2.1.5	Form Factor	18	
	2.1.6	Free Energy	19	
	2.1.7	Tensile Force	20	
2.2	Semifl	exible Chains	21	
2.3	Other Architectures			
	2.3.1	Branched Macromolecules	22	
	2.3.2	Circular Macromolecules	23	
2.4	Exclud	led Volume Interactions	23	
2.5	Chain Swelling			
2.6	Coil-C	Coil–Globule Transition		
2.7	Swelli	ng of Randomly Branched Macromolecules	3	
2.8	Summ	Summary of Size Exponents		
2.9	Experi	mental Determination of Size Exponent	33	

vi	Conte	ents			
3	Water, Oil, and Salt				
•	3.1	Basics of Electrostatics in Vacuum	35		
	5.1	3.1.1 Force and Electric Field	36		
		3.1.2 Electric Potential	37		
		3.1.3 Electrostatic Potential Energy	37		
	3.2	Dielectric Media	38		
		3.2.1 Homogeneous Isotropic Linear Dielectrics	39		
		3.2.2 Entropy of Dielectrics	40		
	3.3	Water	41		
	3.4	Dissolution of Salt and Oil in Water	44		
		3.4.1 Salt	44		
		3.4.2 Oil and Hydrophobic Effect	45		
	3.5	Ion Solvation and Born Free Energy	46		
	3.6	Ion-Pair Formation and Bjerrum Length	49		
		3.6.1 Release of Bound Water Drives Attraction	49		
		3.6.2 Bjerrum Length	51		
		3.6.3 Effect of Ion Size	52		
	3.7	Dipoles	53		
		3.7.1 Properties of Simple Dipoles	54		
	3.8	Dilute Solutions of Strong Electrolytes	58		
		3.8.1 Poisson–Boltzmann Formalism	59		
		3.8.2 Debye–Hückel Theory	61		
		3.8.3 Electrostatic Screening Length (Debye Length)	62		
		3.8.4 Ion Size and Extended Debye–Hückel Theory	64		
		3.8.5 Size and Shape of Ion Cloud	66		
		3.8.6 Free Energy	67		
		3.8.7 Osmotic Pressure	68		
4	Charged Interfaces and Geometrical Objects				
	4.1	Planar Interfaces	71		
		4.1.1 Salt-Free Solutions	72		
		4.1.2 Solutions with Salt	74		
	4.2	Charged Spherical Particles	79		
	4.3	Charged Cylindrical Assemblies	81		
		4.3.1 Counterion Distribution in Salt-Free Solutions	81		
		4.3.2 Counterion Distribution in Solutions with Salt	84		
	4.4	Line Charge and Manning Condensation	87		
	4.5	Dielectric Mismatch	89		
5	Dilut	e Solutions of Charged Macromolecules	92		
	5.1	Introduction	92		
	5.2	Titration Curves and Charge Regularization	95		
	5.3	Polyelectrolyte Model Chain and Basic Concepts	100		

Cambridge University Press & Assessment 978-0-521-86487-9 — Physics of Charged Macromolecules Murugappan Muthukumar Frontmatter <u>More Information</u>

			Contents	vi	
		5.3.1	Excluded Volume Interaction (Hydrophobic Interaction)	102	
		5.3.2	Electrostatic Interaction	102	
		5.3.3	Electrostatic Persistence Length	109	
	5.4	Experi	mental Results	111	
	5.5	Simula	ation Results	113	
		5.5.1	Radius of Gyration	114	
		5.5.2	Counterion Adsorption and Effective Charge	116	
	5.6	Electro	ostatic Swelling with Fixed Polymer Charge	119	
		5.6.1	High Salt Limit	119	
		5.6.2	Low Salt Limit	121	
		5.6.3	Electrostatic Blob	123	
		5.6.4	Crossover Formula	124	
		5.6.5	Electrostatic Stretching of Semiflexible Chains	125	
	5.7	Self-re	gularization of Polymer Charge	126	
	5.8	Coil–C	Globule Transition in Polyelectrolytes	130	
	5.9	Appare	ent Molar Mass, Apparent Radius of Gyration, and Structure		
		Factor		134	
		5.9.1	Apparent Molar Mass	136	
		5.9.2	Correlation Hole and Apparent Radius of Gyration	138	
		5.9.3	Internal Structure	139	
	5.10	Osmot	ic Pressure and Donnan Equilibrium	140	
		5.10.1	Osmotic Pressure of a Dilute Polyelectrolyte Solution	142	
		5.10.2	Donnan Equilibrium	144	
		5.10.3	Donnan Membrane Potential	145	
	5.11	Polyan	npholytes, Polyzwitterions, and Proteins	146	
		5.11.1	Polyampholytes	147	
		5.11.2	Polyzwitterions	149	
		5.11.3	Intrinsically Disordered Proteins	153	
;	Structure and Thermodynamics in Homogeneous Polyelectrolyte Solutions				
	6.1	Introdu	uction	159	
	6.2	Solutio	ons of Uncharged Macromolecules	162	
		6.2.1	Flory–Huggins Theory	162	
		6.2.2	Concentration Fluctuations	166	
		6.2.3	Scaling Laws	174	
	6.3	Semidi	ilute and Concentrated Polyelectrolyte Solutions	177	
		6.3.1	Essentials of Double Screening Theory	177	
		6.3.2	Effective Interaction and Attraction at Intermediate Distances	180	
		6.3.3	Correlation Length in Polyelectrolyte Solutions	182	
		6.3.4	Scattering Function	182	
		6.3.5	Size of a Labeled Polyelectrolyte Chain	183	
		6.3.6	Free Energy and Osmotic Pressure	183	
	6.4	Electro	ostatically Driven Structure in Salt-Free Polyelectrolyte Solutions	185	
	6.5	Aggreg	gation of Similarly Charged Polymers	192	
	0.0		Aggregation of Similarly Charget Polymens		

© in this web service Cambridge University Press & Assessment

viii	Contents 196				
7					
	7 1	Introduction		196	
	7.1	Hydrodynamic Interaction		200	
	7.2	Dilute Solutions of Colloidal Pa	ticles Macroions and Folded Proteins	200	
	1.5	7.3.1 Finstein's Electrophore	ic Mobility	202	
		7.3.2 Hückel Theory	ie woonity	202	
		7.3.3 Henry Theory		209	
		7.3.4 Helmholtz–Smoluchow	ski Theory	200	
		7.3.5 Electroosmotic Flow	Ski Theory	207	
		736 Zeta Potential		210	
		7.3.7 Mobility through a Nan	opore	211	
	74	Phenomenology of Dynamics of	Polyelectrolyte Solutions	217	
	/	7.4.1 Diffusion and Relaxatic	n Time	214	
		7.4.2 Ordinary–Extraordinary	Transition	216	
		7.4.3 Electrophoretic Mobilit	V	219	
		7.4.4 Viscosity		219	
	7.5	Models of Dynamics of Uncharg	ed Polymers	222	
		7.5.1 Rouse Dynamics		225	
		7.5.2 Zimm Dynamics		230	
		7.5.3 Reptation Model		233	
		7.5.4 Entropic Barrier Model		238	
	7.6	Dilute Polyelectrolyte Solutions		242	
		7.6.1 Translational Friction C	oefficient	242	
		7.6.2 Electrophoretic Mobilit	y	243	
		7.6.3 Coupled Diffusion Coef	ficient	245	
		7.6.4 Intrinsic Viscosity and I	Modulus	249	
	7.7	Semidilute Polyelectrolyte Solut	ions	250	
		7.7.1 Tracer Diffusion Coeffic	cient	254	
		7.7.2 Electrophoretic Mobilit	у	254	
		7.7.3 Cooperative Diffusion (Coefficient	255	
		7.7.4 Coupled Diffusion and	Ordinary–Extraordinary Transition	256	
		7.7.5 Viscosity		261	
	7.8	Entangled Solutions		264	
	7.9	Conductivity of Polyelectrolyte Solutions			
	7.10	Dielectric Relaxation		267	
	7.11	Polymer Translocation		269	
		7.11.1 Polymer Capture throug	h a Barrier	273	
		7.11.2 Kinetics of Translocation	n	275	
	7.12	Topologically Frustrated Non-di	ffusive Dynamics	277	

			Contents	ix
8	Solf-	Accombly	r and Phase Rehaviors	270
0	0 1	Comon		215
	8.1	Genera	al Premise	275
	8.2		-Liquid Phase Separation in Solutions of Uncharged Polymers	282
	0.2	0.2.1	concentration Fluctuations and Landau–Ginzburg Theory	201
	0.5	2 2 1	Free Energy	291
		0.3.1 8 3 2	Instability and Criticality	292
	84	Dhase	Rehavior of Polyelectrolyte Solutions	292
	0.4	8 / 1	Salt Free Polyelectrolyte Solutions	294
		842	Polyelectrolyte Solutions with Salt	205
		843	Charge Regularization: Daughter Phases Have Different	270
		0.4.5	Charge Densities	300
		844	Concentration Fluctuations and Ginzburg Criterion	302
	8 5	Kinetia	cs of Phase Separation	303
	0.5	8 5 1	Spinodal Decomposition	304
		852	Nucleation and Growth	307
		853	Interlude of Aggregation in Phase Separation	308
	8.6	Micell	ization and Microphase Separation	310
		8.6.1	Self-Assembly of Charged Diblock Copolymes in Solutions	311
		8.6.2	Microphase Separation	316
	8.7	Isotrop	bic–Nematic Transition in Solutions of Charged Rods	322
	8.8	Proteir	ns, Fibrillization, and Membraneless Organelles	326
		8.8.1	Fibrillization	327
		8.8.2	Membraneless Organelles	336
9	Adso	Adsorption, Complexation, and Coacervation		
	9.1	Introdu	uction	339
	9.2	Adsorption		340
		9.2.1	Adsorption at a Planar Surface	343
		9.2.2	Adsorption at Spherical Surfaces	347
	9.3	Charge	ed Brushes	349
		9.3.1	No-Salt Limit	350
		9.3.2	High-Salt Limit	352
		9.3.3	Disjoining Pressure	353
		9.3.4	Density Profile	353
	9.4	Genon	ne Packaging in Viruses	354
	9.5	Intermolecular Complexation		359
		9.5.1	Counterion Release Drives Complex Coacervation	362
		9.5.2	Competitive Substitution in Intermolecular Complexes	363
	9.6	Coacer	rvation	366
		9.6.1	Voorn–Overbeek Theory	368
		9.6.2	Dipolar Theory of Coacervation	370
	9.7	Memb	raneless Organelles	373

376
370
370
380
38
38.
:1:h:
20°
20 20'
20
200
380
390
391
392
393
394
394
393
397
397
398
401
402
403
403
eriments 400
ynamics 412
413
413
410
420
42
423
431
434
13e
430
45 AA
++2
444
445 447

	Contents xi
Appendix 7	471
Appendix 8	473
Appendix 9	476
Appendix 10	478
References	483
Index	502

Preface

Charged macromolecules constitute the vocabulary used by Mother Nature to express life as we know it. These molecules are also abundant in the synthetic world. Yet, understanding the behavior of charged macromolecules is one of the grand challenges of the biological and physical sciences. The difficulty of this challenge lies in several long-range forces operating simultaneously that endow assemblies of charged macromolecules with amazing functions. The electrostatic forces, topological correlations emanating from macromolecular connectivity, and hydrodynamics are all long-ranged. These aspects collectively guide the structure, dynamics, and movement of individual macromolecules and their assemblies. In view of the prevalence of charged macromolecules in nature, extensive phenomenology has been cultivated during the past many decades. The rich collective behaviors of charged macromolecules are unique to the presence of charges and deviate significantly from those of uncharged macromolecular systems. In efforts to understand these behaviors, there has been extensive theoretical effort during the past seven decades with variable success. More and more theories are being vigorously pursued, with different levels of assumptions and approximations, in order to obtain a comprehensive description of the behavior of charged macromolecules.

This complicated field of charged macromolecules inevitably demands highly sophisticated mathematical techniques accompanied by clear physical pictures. The goal of this book is to focus on the most important concepts pertinent to electrolyte solutions, charged macromolecules, and their assemblies. Heavy mathematics and fine details of theories are relegated to the original literature. I am painfully aware that I have left out many interesting developments particularly in theoretical aspects. Most of the material in this book deals with fundamentals and general concepts that are yet to enter textbooks.

This book is an introduction to the vast field of charged macromolecules practiced by biologists, physicists, chemists, and chemical engineers. It is written at the level of an entering graduate student who is interested in the burgeoning fields of living matter, soft matter physics, polyelectrolyte physics, and biotechnology. The book is structured in a manner that it provides a gateway to a large number of topics at the center of the physics of charged macromolecules. The goal is to provide a common language of fundamental concepts to a broader audience, independent of the expertise of the reader. Creating a common conceptual framework in such a difficult subject for use by a diverse readership is not an easy task. However, I have attempted to start from the

xiv Preface

basics of charged and uncharged polymers, and then I have combined these concepts to describe the collective behavior of charged systems. Effort is made to make the discussion qualitative and concept based. Technical details of a few important concepts are provided in appendices. Highly sophisticated mathematical details are referred to original publications.

The outline is as follows: After an exposure to the scope of the topics in Chapter 1, the second chapter provides a synopsis of models of uncharged polymer chains in isolation and experimental results in dilute solutions. Chapter 2 is a convenient introduction to readers who might be interested solely in basic polymer physics. The next two chapters, Chapters 3 and 4, deal with the basics of electrostatics, dielectric media, interactions among electrolyte ions, and the nature of electrolyte solutions with physical boundaries. Chapter 5 is devoted to a survey of experimental results in dilute solutions of charged macromolecules and various theoretical approaches to comprehend these facts. Chapter 6 describes how the fundamental principles developed in dilute solutions are modified by crowding of charged macromolecules in homogeneous nondilute solutions. This situation has been a long-standing challenge to understand requiring advanced theoretical apparatus. Readers interested in biological systems in dilute conditions can skip this chapter without losing the thread of concepts. The dynamics of solutions of charged macromolecules is dealt with in Chapter 7. This chapter, along with Appendix 6, constitutes a separate mini-book of their own and deals with the dynamics and mobility of charged rigid particles and flexible macromolecules. Chapter 8 deals with the fundamentals of liquid-liquid phase separation in solutions of charged macromolecules after addressing the situation with uncharged macromolecules. Micellization, fibrillization, and microphase separation are also dealt with in Chapter 8. Applications of the various concepts developed in the above chapters to the phenomena of adsorption, virus packing, and coacervation are presented in Chapter 9. The final chapter is on charged gels, which are ubiquitous in health care and other industries. The gap between what we understand today and what needs to be accomplished in the future is briefly mentioned in the Epilogue.

I hope the readers will benefit from this introduction to the field and implement the main concepts given here in their own journeys with charged macromolecules.

Acknowledgments

I want to thank my students and postdocs for the intellectual stimulation they have challenged me with over the past two decades and more. Without their collaboration, this book would not be possible. In particular, I am grateful to Khatcher Margossian for reading almost every page and contributing valuable suggestions to improve the clarity of presentation. Most significantly, his encouragement and conviction for the need for such a book catalyzed the completion of this work. I am also grateful to Siao-Fong Li who has gone through most of the derived equations. My special thanks are to Alexis Batakis for drawing most of the figures in the book.

I also gratefully acknowledge support from the National Science Foundation for my research on charged macromolecules. Without such support, this book would not have been a possibility. I am also indebted to many collaborators outside my laboratory. In particular, it is a pleasure to thank Professor Manfred Schmidt for his friendship and numerous stimulating discussions on the intricacies of polyelectrolyte behavior.

Finally, it is my greatest pleasure to thank my wife Lalitha for all support she has provided throughout my career. During the difficult time of writing this book, I was fortunate to spend time with my grandson Kanna who inspired boundless energy, imagination, and purity of thought. I am immensely grateful to him for support and play.