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Introduction

In the history of cryptography, quantum cryptography is a new and impor-

tant chapter. It is a recent technique that can be used to ensure the con-

fidentiality of information transmitted between two parties, usually called

Alice and Bob, by exploiting the counterintuitive behavior of elementary

particles such as photons.

The physics of elementary particles is governed by the laws of quantum

mechanics, which were discovered in the early twentieth century by talented

physicists. Quantum mechanics fundamentally change the way we must see

our world. At atomic scales, elementary particles do not have a precise loca-

tion or speed, as we would intuitively expect. An observer who would want

to get information on the particle’s location would destroy information on

its speed – and vice versa – as captured by the famous Heisenberg uncer-

tainty principle. This is not a limitation due to the observer’s technology

but rather a fundamental limitation that no one can ever overcome.

The uncertainty principle has long been considered as an inconvenient

limitation, until recently, when positive applications were found.

In the meantime, the mid-twentieth century was marked by the creation

of a new discipline called information theory. Information theory is aimed

at defining the concept of information and mathematically describing tasks

such as communication, coding and encryption. Pioneered by famous sci-

entists like Turing and von Neumann and formally laid down by Shannon,

it answers two fundamental questions: what is the fundamental limit of

data compression, and what is the highest possible transmission rate over a

communication channel?

Shannon was also interested in cryptography and in the way we can trans-

mit confidential information. He proved that a perfectly secure cipher would

need a secret key that is as long as the message to encrypt. But he does not

say how to obtain such a long secret key. This is rather limiting because the
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2 Introduction

secret key needs to be transmitted confidentially, e.g., using a diplomatic

suitcase. If we had a way, say a private line, to transmit it securely, we

could directly use this private line to transmit our confidential information.

Since the seventies and up to today, cryptographers have found several

clever ways to send confidential information using encryption. In particular,

classical ciphers encrypt messages using a small secret key, much smaller

than the message size. This makes confidentiality achievable in practice.

Yet, we know from Shannon’s theory that the security of such schemes can-

not be perfect.

Leaving aside the problem of sending confidential information, let us come

back to information theory. Shannon defined information as a mathematical

concept. Nevertheless, a piece of information must somehow be stored or

written on a medium and, hence, must follow the laws of physics. Landauer

was one of the first to realize the consequences of the fact that any piece

of information ultimately exists because of its physical support. Shannon’s

theory essentially assumes a classical physical support. When the medium

is of atomic scale, the carried information behaves quite differently, and

all the features specific to quantum mechanics must be translated into an

information-theoretic language, giving rise to quantum information theory.

The first application of quantum information theory was found by Wies-

ner in the late sixties [186]. He proposed using the spin of particles to make

unforgeable bank notes. Roughly speaking, the spin of a particle obeys the

uncertainty principle: an observer cannot get all the information about the

spin of a single particle; he would irreversibly destroy some part of the infor-

mation when acquiring another part. By encoding identification information

on bank notes in a clever way using elementary particles, a bank can verify

their authenticity by later checking the consistency of this identification in-

formation. At the atomic scale, the forger cannot perfectly copy quantum

information stored in the elementary particles; instead, he will unavoidably

make mistakes. Simply stated, copying the bank note identification infor-

mation is subject to the uncertainty principle, and thus a forgery will be

distinguishable from a legitimate bank note.

Other applications of quantum information theory were found. For in-

stance, a quantum computer, that is, a computer that uses quantum princi-

ples instead of the usual classical principles, can solve some problems much

faster than the traditional computer. In a classical computer, every compu-

tation is a combination of zeroes and ones (i.e., bits). At a given time, a bit

can either be zero or one. In contrast, a qubit, the quantum equivalent of a

bit, can be a zero and a one at the same time. In a sense, processing qubits

is like processing several combinations of zeroes and ones simultaneously,
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Introduction 3

and the increased speed of quantum computing comes from exploiting this

parallelism. Unfortunately, the current technologies are still far away from

making this possible in practice.

Following the tracks of Weisner’s idea, Bennett and Brassard proposed in

1984 a protocol to distribute secret keys using the principles of quantum me-

chanics called quantum cryptography or more precisely quantum key distri-

bution [10]. By again exploiting the counterintuitive properties of quantum

mechanics, they developed a way to exchange a secret key whose secrecy

is guaranteed by the laws of physics. Following the uncertainty principle,

an eavesdropper cannot know everything about a photon that carries a key

bit and will destroy a part of the information. Hence, eavesdropping causes

errors on the transmission line, which can be detected by Alice and Bob.

Quantum key distribution is not only based on the principles of quantum

physics, it also relies on classical information theory. The distributed key

must be both common and secret. First, the transmission errors must be

corrected, whether they are caused by eavesdropping or by imperfections

in the setup. Second, a potential eavesdropper must know nothing about

the key. To achieve these two goals, techniques from classical information

theory, collectively denoted as secret-key distillation, must be used.

Unlike the quantum computer, quantum key distribution is achievable

using current technologies, such as commercially available lasers and fiber

optics. Furthermore, Shannon’s condition on the secret key length no longer

poses any problem, as one can use quantum key distribution to obtain a

long secret key and then use it classically to encrypt a message of the same

length. The uncertainty principle finds a positive application by removing

the difficulty of confidentially transmitting long keys.

State-of-the-art ciphers, if correctly used, are unbreakable according to

today’s knowledge. Unfortunately, their small key size does not offer any

long-term guarantee. No one knows what the future will bring, so if clever

advances in computer science or mathematics once jeopardize today’s ci-

phers’ security, quantum key distribution may offer a beautiful alternative

solution. Remarkably, the security of quantum key distribution is guaran-

teed by the laws of quantum mechanics.

Furthermore, quantum key distribution guarantees long-term secrecy of

confidential data transmission. Long-term secrets encrypted today using

classical ciphers could very well become illegitimately decryptable in the next

decades. There is nothing that prevents an eavesdropper from intercepting

an encrypted classical transmission and keeping it until technology makes

it feasible to break the encryption. On the other hand, the key obtained

using quantum key distribution cannot be copied. Attacking the key means
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4 Introduction

attacking the quantum transmission today, which can only be done using

today’s technology.

For some authors, quantum cryptography and quantum key distribution

are synonymous. For others, however, quantum cryptography also includes

other applications of quantum mechanics related to cryptography, such as

quantum secret sharing. A large portion of these other applications requires

a quantum computer, and so cannot be used in practice. On the other hand,

the notion of key is so central to cryptography that quantum key distribution

plays a privileged role. Owing to this last comment, we will follow the first

convention and restrict ourselves to quantum key distribution in the scope

of this book.

1.1 A first tour of quantum key distribution

As already mentioned, quantum key distribution (QKD) is a technique that

allows two parties, conventionally called Alice and Bob, to share a common

secret key for cryptographic purposes. In this section, I wish to give a general

idea of what QKD is and the techniques it involves. The concepts will be

covered in more details in the subsequent chapters.

To ensure the confidentiality of communications, Alice and Bob agree

on a common, yet secret, piece of information called a key. Encryption is

performed by combining the message with the key in such a way that the

result is incomprehensible by an observer who does not know the key. The

recipient of the message uses his copy of the key to decrypt the message.

Let us insist that it is not the purpose of QKD to encrypt data. Instead,

the goal of QKD is to guarantee the secrecy of a distributed key. In turn,

the legitimate parties may use this key for encryption. The confidentiality

of the transmitted data is then ensured by a chain with two links: the

quantum-distributed key and the encryption algorithm. If one of these two

links is broken, the whole chain is compromised; hence we have to look at

the strengths of both links.

First, how is the confidentiality of the key ensured? The laws of quantum

mechanics have strange properties, with the nice consequence of making the

eavesdropping detectable. If an eavesdropper, conventionally called Eve,

tries to determine the key, she will be detected. The legitimate parties will

then discard the key, while no confidential information has been transmit-

ted yet. If, on the other hand, no tapping is detected, the secrecy of the

distributed key is guaranteed.

As the second link of the chain, the encryption algorithm must also have

strong properties. As explained above, the confidentiality of data is abso-
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1.1 A first tour of quantum key distribution 5

lutely guaranteed if the encryption key is as long as the message to transmit

and is not reused for subsequent messages. This is where quantum key dis-

tribution is particularly useful, as it can distribute long keys as often as

needed by Alice and Bob.

Let us detail further how QKD works. Quantum key distribution requires

a transmission channel on which quantum carriers are transmitted from

Alice to Bob. In theory, any particle obeying the laws of quantum mechanics

can be used. In practice, however, the quantum carriers are usually photons,

the elementary particle of light, while the channel may be an optical fiber

(e.g., for telecommunication networks) or the open air (e.g., for satellite

communications).

In the quantum carriers, Alice encodes random pieces of information that

will make up the key. These pieces of information may be, for instance,

random bits or Gaussian-distributed random numbers, but for simplicity of

the current discussion, let us restrict ourselves to the case of Alice encoding

only zeroes and ones. Note that what Alice sends to Bob does not have to

– and may not – be meaningful. The whole point is that an eavesdropper

cannot predict any of the transmitted bits. In particular, she may not use

fixed patterns or pseudo-randomly generated bits, but instead is required to

use “truly random” bits – the meaning of “truly random” in this scope will

be discussed in Chapter 5.

During the tranmission between Alice and Bob, Eve might listen to the

quantum channel and therefore spy on potential secret key bits. This does

not pose a fundamental problem to the legitimate parties, as the eaves-

dropping is detectable by way of transmission errors. Furthermore, the

secret-key distillation techniques allow Alice and Bob to recover from such

errors and create a secret key out of the bits that are unknown to Eve.

After the transmission, Alice and Bob can compare a fraction of the ex-

changed key to see if there are any transmission errors caused by eaves-

dropping. For this process, QKD requires the use of a public classical au-

thenticated channel, as depicted in Fig. 1.1. This classical channel has two

important characteristics, namely, publicness and authentication. It is not

required to be public, but if Alice and Bob had access to a private channel,

they would not need to encrypt messages; hence the channel is assumed to

be public. As an important consequence, any message exchanged by Alice

and Bob on this channel may be known to Eve. The authentication feature

is necessary so that Alice and Bob can make sure that they are talking to

each other. We may think that Alice and Bob know each other and will not

get fooled if Eve pretends to be either of them – we will come back on this

aspect in Section 5.1.1.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-86485-5 - Quantum Cryptography and Secret-Key Distillation
Gilles Van Assche
Excerpt
More information

http://www.cambridge.org/0521864852
http://www.cambridge.org
http://www.cambridge.org


6 Introduction

Alice BobQuantum channel

Public classical authenticated channel

Eve

Fig. 1.1. Quantum key distribution comprises a quantum channel and a public clas-
sical authenticated channel. As a universal convention in quantum cryptography,
Alice sends quantum states to Bob through a quantum channel. Eve is suspected
of eavesdropping on the line.

I now propose to overview the first QKD protocol, created by Bennett

and Brassard in 1984, called BB84 for short [10]. More than twenty years

later, BB84 can still be considered as a model for many other protocols and

allows me to introduce the main concepts of QKD.

1.1.1 Encoding random bits using qubits

Any message can, at some point, be converted into zeroes and ones. In

classical information theory, the unit of information is therefore the bit,

that is, the set {0, 1}. The quantum carriers of BB84, however, cannot be

described in classical terms, so we have to adapt our language to this new

setting.

There is a correspondence between the quantum state of some physical

system and the information it carries. Quantum states are usually written

using Dirac’s notation, that is, with a symbol enclosed between a vertical

bar and an angle bracket, as in |ψ〉, |1〉 or |x〉; quantum pieces of information

follow the same notation.

In quantum information theory, the unit of information is the qubit , the

quantum equivalent of a bit. Examples of physical systems corresponding

to a qubit are the spin of an electron or the polarization of a photon. More

precisely, a qubit is described by two complex numbers and belongs to the

set

{α|0〉 + β|1〉 : |α|2 + |β|2 = 1, α, β ∈ C},

with |0〉 and |1〉 two reference qubits, corresponding to two orthogonal states
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1.1 A first tour of quantum key distribution 7

in a quantum system. The qubits |0〉 (α = 1, β = 0) and |1〉 (α = 0, β = 1)

may be thought of as the quantum equivalent of the bits 0 and 1, respectively.

For other values of α and β, we say that the qubit contains a superposition

of |0〉 and |1〉. For instance, the qubits 2−1/2|0〉 + 2−1/2|1〉 and sin π/6|0〉 +

i cos π/6|1〉 are both superpositions of |0〉 and |1〉, albeit different ones.

In BB84, Alice encodes random (classical) bits, called key elements, using

a set of four different qubits. The bit 0 can be encoded with either |0〉 or

|+〉 = 2−1/2|0〉 + 2−1/2|1〉. The bit 1 can be encoded with either |1〉 or

|−〉 = 2−1/2|0〉 − 2−1/2|1〉 – note the difference in sign. In both cases, Alice

chooses either encoding rule at random equally likely. Then, she sends a

photon carrying the chosen qubit to Bob.

When the photon arrives at Bob’s station, he would like to decode what

Alice sent. For this, he needs to perform a measurement. However, the laws

of quantum mechanics prohibit Bob from determining the qubit completely.

In particular, it is impossible to determine accurately the coefficients α and

β of the received qubit α|0〉 + β|1〉. Instead, Bob must choose a pair of

orthogonal qubits and perform a measurement that distinguishes only among

them. We say that two qubits, |φ〉 = α|0〉+β|1〉 and |ψ〉 = α′|0〉+β′|1〉, are

orthogonal iff αα′∗ + ββ′∗ = 0.

Let us take for instance the qubits |0〉 and |1〉, which are orthogonal. So,

Bob can make a measurement that distinguishes whether Alice sends |0〉 or

|1〉. But what happens if she sends |+〉 or |−〉? Actually, Bob will obtain a

result at random! More generally, if Bob receives |φ〉 = α|0〉 + β|1〉 he will

measure |0〉 with probability |α|2 and |1〉 with probability |β|2 – remember

that |α|2 + |β|2 = 1. In the particular case of |+〉 and |−〉, Bob will get

either |0〉 or |1〉, each with probability 1/2. Consequently, Bob is not able to

distinguish between |+〉 and |−〉 in this case and gets a bit value uncorrelated

from what Alice sent.

So, what is so special about the qubits |0〉 and |1〉? Nothing! Bob can as

well try to distinguish any pair of orthogonal states, for instance |+〉 and |−〉.
Note that |0〉 and |1〉 can be equivalently written as |0〉 = 2−1/2|+〉+2−1/2|−〉
and |1〉 = 2−1/2|+〉−2−1/2|−〉. Hence, in this case, Bob will perfectly decode

Alice’s key element when she sends |+〉 and |−〉, but he will not be able to

distinguish |0〉 and |1〉. An example of transmission is depicted in Fig. 1.2.

In the BB84 protocol, Bob randomly chooses to do either measurement.

About half of the time, he chooses to distinguish |0〉 and |1〉; the rest of

the time, he distinguishes |+〉 and |−〉. At this point, Alice does not reveal

which encoding rule she used. Therefore, Bob measures correctly only half

of the bits Alice sent him, not knowing which ones are wrong. After sending

a long stream of key elements, however, Alice tells Bob which encoding rule
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8 Introduction
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Fig. 1.2. Example of transmission using BB84. The first two rows show what Alice
sends. The bottom rows show the measurement chosen by Bob and a possible result
of this measurement.

she chose for each key element, and Bob is then able to discard all the

wrong measurements; this part of the protocol is called the sifting , which is

illustrated in Fig. 1.3.

j0i

j0i / j1i

0

j0i

0

Key element

Encoding

Measurement

Result

Key element

Time

j-i

j+i / j-i

1

j-i

1
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j0i / j1i

j1i

j1i

j+i / j-i

j-i

j+i

j0i / j1i

j1i

Alice

Bob

Fig. 1.3. Sifting of the transmission of Fig. 1.2. The key elements for which Bob’s
measurement does not match Alice’s encoding rule are discarded.

To summarize so far, I have described a way for Alice to send random

bits to Bob. Alice chooses among four different qubits for the encoding

(two possible qubits per bit value), while Bob chooses between two possible

measurement procedures for the decoding. Bob is not always able to deter-

mine what Alice sent, but after sifting, Alice and Bob keep a subset of bits

for which the transmission was successful. This transmission scheme allows

Alice and Bob to detect eavesdropping, and this aspect is described next.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-86485-5 - Quantum Cryptography and Secret-Key Distillation
Gilles Van Assche
Excerpt
More information

http://www.cambridge.org/0521864852
http://www.cambridge.org
http://www.cambridge.org


1.1 A first tour of quantum key distribution 9

1.1.2 Detecting eavesdropping

The key feature for detecting eavesdropping is that the information is en-

coded in non-orthogonal qubits. Eve can, of course, intercept the quantum

carriers and try to measure them. However, like Bob, she does not know in

advance which set of carriers Alice chose for each key element. Like Bob,

she may unsuccessfully distinguish between |0〉 and |1〉 when Alice encodes

a bit as |+〉 or |−〉, or vice versa.

In quantum mechanics, measurement is destructive. Once measured, the

particle takes the result of the measurement as a state. More precisely,

assume that an observer measures a qubit |φ〉 so as to distinguish between

|0〉 and |1〉. After the measurement, the qubit will become either |φ〉 →
|φ′〉 = |0〉 or |φ〉 → |φ′〉 = |1〉, depending on the measurement result, no

matter what |φ〉 was! In general, the qubit after measurement |φ′〉 is not

equal to the qubit before measurement |φ〉, except if the qubit is one of those

that the observer wants to distinguish (i.e., |0〉 or |1〉 in this example).

Every time Eve intercepts a photon, measures it and sends it to Bob, she

has a probability 1/4 of introducing an error between Alice’s and Bob’s bits.

Let us break this down. Eve has a probability 1/2 of measuring in the right

set. When she does, she does not disturb the state and goes unnoticed. But

she is not always lucky. When she measures in the wrong set, however, she

sends the wrong state to Bob (e.g., |+〉 or |−〉 instead of |0〉 or |1〉). This

situation is depicted in Fig. 1.4. With the wrong state, Bob will basically

measure a random bit, which has a probability 1/2 of matching Alice’s bit

and a probability 1/2 of being wrong.

j0i

j-i

j+i

j1i

j0i / j1i

j0i
j+i / j-i

Eve

Bob

j0i

j1i

j0i / j1i

Bob

Fig. 1.4. Possible events when Eve uses the wrong measurement for eavesdropping.

So, when Eve tries to eavesdrop, she will get irrelevant results about half

of the time and disturb the state. She might decide not to send Bob the

states for which she gets irrelevant results, but it is impossible for her to

make such a distinction, as she does not know in advance which encoding is
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10 Introduction

used. Discarding a key element is useless for Eve since this sample will not

be used by Alice and Bob to make the key. However, if she does retransmit

the state (even though it is wrong half of the time), Alice and Bob will

detect her presence by an unusually high number of errors between their

key elements.

Both Bob and Eve have the same difficulties in determining what Alice

sent, since they do not know which encoding is used. But the situation is

not symmetric in Bob and Eve: all the communications required to do the

sifting are made over the classical authenticated channel. This allows Alice

to make sure she is talking to Bob and not to Eve. So, the legitimate parties

can guarantee that the sifting process is not influenced by Eve. Owing to

this, Alice and Bob can select only the key elements which are correctly

measured.

To detect the presence of an eavesdropper, Alice and Bob must be able

to detect transmission errors. For this, an option is to disclose a part of

the sifted key. A given protocol might specify that after a transmission of

l + n key elements (e.g., l + n = 100 000), numbered from 0 to l + n − 1,

Alice randomly chooses n indexes (e.g., n = 1000) and communicates them

to Bob. Alice and Bob then reveal the corresponding n key elements to one

another so as to count the number of errors. Any error means there was

some eavesdropping. The absence of error gives some statistical confidence

on the fact that there was no eavesdropping – Eve might just have been

lucky, guessing right the encoding sets or making errors only on the other

l key elements. Of course, only the remaining l key elements will then be

used to produce a secret key.

1.1.3 Distilling a secret key

In the case where errors are detected, Alice and Bob may decide to abort

the protocol, as errors may be caused by eavesdropping. At least, this pre-

vents the creation of a key that can be known to the adversary. This kind

of decision, however, may be a little stringent. In practice, the physical

implementation is not perfect and errors may occur for many reasons other

than eavesdropping, such as noise or losses in the quantum channel, imper-

fect generation of quantum states or imperfect detectors. Also, Eve may

just eavesdrop a small fraction of the sifted key, making the remaining key

elements available for creating a secret key. There should thus be a way to

make a QKD protocol more robust against noise.

Alice and Bob count the number of errors in the disclosed key elements

and divide this number by n to obtain an estimate of the expected fraction e
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1.1 A first tour of quantum key distribution 11

of transmission errors in the whole set of key elements; e is called the bit error

rate. They can then deduce the amount of information Eve knows about the

key elements. For instance, they can statistically estimate that Eve knows

no more than, say, IE bits on the l key elements. This is the estimation part

of the protocol. The formula giving the quantity IE is not described here;

it results from an analysis of what an eavesdropper may do given the laws

of quantum mechanics. Also, the quantity IE does not precisely tell Alice

and Bob what Eve knows about the key elements. She may know the exact

value of IE key elements or merely the result of some arbitrary function of

the l key elements, which gives her IE bits of information in the Shannon

sense.

At this point, Alice and Bob know that the l undisclosed key elements

have some error rate e and that a potential eavesdropper acquired up to

IE bits of information on them. Using the public classical authenticated

channel, Alice and Bob can still try to make a fully secret key; this part is

called secret-key distillation.

Secret-key distillation usually comprises a step called reconciliation, whose

purpose is to correct the transmission errors, and a step called privacy am-

plification, which wipes out Eve’s information at the cost of a reduced key

length. I shall briefly describe these two processes.

In the case of BB84, the reconciliation usually takes the form of an inter-

active error correction protocol. Alice and Bob alternatively disclose parities

of subsets of their key elements. When they encounter a diverging parity,

it means that there is an odd number of errors in the corresponding subset,

hence at least one. Using a dichotomy, they can narrow down the error lo-

cation and correct it. They repeat this process a sufficient number of times

and the result is that Alice and Bob now share equal bits.

For secret-key distillation, all the communications are made over the pub-

lic authenticated classical channel. Remember that Eve cannot intervene in

the process but she may listen to exchanged messages, which in this case

contain the exchanged parity bits. Therefore, the knowledge of Eve is now

composed of IE + |M | bits, with |M | the number of parity bits disclosed

during the reconciliation.

To make the key secret, the idea behind privacy amplification is to exploit

what Eve does not know about the key. Alice and Bob can calculate a

function f of their key elements so as to spread Eve’s partial ignorance over

the entire result. Such a function (e.g., like a hashing function in classical

cryptography) is chosen so that each of its output bits depends on most of, if

not all, the input bits. An example of such a function consists of calculating

the parity of random subsets of bits. Assume, for instance, that Eve perfectly
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12 Introduction

knows the bit x1 but does not know anything about the value of the bit x2.

If the function f outputs x1+x2 mod 2, Eve has no clue on this output value

since the two possibilities x1 + x2 = 0(mod 2) and x1 + x2 = 1(mod 2) are

equally likely no matter what the value of x1 is.

The price to pay for privacy amplification to work is that the output

(secret) key must be smaller than the input (partially secret) key. The

reduction in size is roughly equal to the number of bits known to Eve,

and the resulting key size is thus l − IE − |M | bits. To maximize the key

length and perhaps to avoid Eve knowing everything about the key (e.g.,

l − IE − |M | = 0), it is important that the reconciliation discloses as little

information as possible, just enough to make Alice and Bob able to correct

all their errors.

Notice that errors on the quantum transmission are paid twice, roughly

speaking, on the amount of produced secret key bits. First, errors should

be attributed to eavesdropping and are counted towards IE. Second, errors

must be corrected, for which parity bits must be publicly disclosed and are

counted towards |M |.
Finally, the secret key obtained after privacy amplification can be used

by Alice and Bob for cryptographic purposes. In particular, they can use it

to encrypt messages and thus create a secret channel.

1.1.4 Further reading

For more information, I should like to point out the paper by Bennett,

Brassard and Ekert [12]. One can also find more technical information in

the review paper by Gisin, Ribordy, Tittel and Zbinden [64].

1.2 Notation and conventions

Throughout this book, we use random variables. A discrete random variable

X is a pair composed of a finite set X and a probability distribution on

X . The elements x of X are called symbols. The probability distribution

is denoted as PX(x) = Pr[X = x] for x ∈ X and of course verifies the

relations PX(x) ≥ 0 and
∑

xPX(x) = 1. We will use capital roman letters

for random variables, the corresponding lower-case roman letters for the

particular values (or symbols) that they can take, and the corresponding

capital script letter for the sets over which they are defined.

The continuous random variables are defined similarly. A continuous ran-

dom variable X is defined as an uncountable set X together with a proba-

bility density function pX(x) on X .
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The other important definitions are given along the way. For a list of the

main symbols and abbreviations, please refer to the Appendix.
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