PROBABILITY AND RANDOM PROCESSES FOR ELECTRICAL AND COMPUTER ENGINEERS

The theory of probability is a powerful tool that helps electrical and computer engineers explain, model, analyze, and design the technology they develop. The text begins at the advanced undergraduate level, assuming only a modest knowledge of probability, and progresses through more complex topics mastered at the graduate level. The first five chapters cover the basics of probability and both discrete and continuous random variables. The later chapters have a more specialized coverage, including random vectors, Gaussian random vectors, random processes, Markov Chains, and convergence. Describing tools and results that are used extensively in the field, this is more than a textbook: it is also a reference for researchers working in communications, signal processing, and computer network traffic analysis. With over 300 worked examples, some 800 homework problems, and sections for exam preparation, this is an essential companion for advanced undergraduate and graduate students.

Further resources for this title, including solutions, are available online at www.cambridge.org/9780521864701.

JOHN A. GUBNER has been on the Faculty of Electrical and Computer Engineering at the University of Wisconsin-Madison since receiving his Ph.D. in 1988, from the University of Maryland at College Park. His research interests include ultra-wideband communications; point processes and shot noise; subspace methods in statistical processing; and information theory. A member of the IEEE, he has authored or co-authored many papers in the *IEEE Transactions*, including those on Information Theory, Signal Processing, and Communications.

PROBABILITY AND RANDOM PROCESSES FOR ELECTRICAL AND COMPUTER ENGINEERS

JOHN A. GUBNER University of Wisconsin-Madison

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521864701

© Cambridge University Press 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2006 6th printing 2014

Printed in the United States of America by Sheridan Books, Inc.

A catalog record for this publication is available from the British Library

ISBN 978-0-521-86470-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Sue and Joe

Contents

	Chaj Pref	pter dependencies ace	page	x xi
1	Introduction to probability			
	1.1	Sample spaces, outcomes, and events		6
	1.2	Review of set notation		8
	1.3	Probability models		17
	1.4	Axioms and properties of probability		22
	1.5	Conditional probability		26
	1.6	Independence		30
	1.7	Combinatorics and probability		34
		Notes		43
		Problems		48
		Exam preparation		62
2	Intro	oduction to discrete random variables		63
	2.1	Probabilities involving random variables		63
	2.2	Discrete random variables		66
	2.3	Multiple random variables		70
	2.4	Expectation		80
		Notes		96
		Problems		99
		Exam preparation		106
3	Mor	e about discrete random variables		108
	3.1	Probability generating functions		108
	3.2	The binomial random variable		111
	3.3	The weak law of large numbers		115
	3.4	Conditional probability		117
	3.5	Conditional expectation		127
		Notes		130
		Problems		132
	-	Exam preparation		137
4	Con	tinuous random variables		138
	4.1	Densities and probabilities		138
	4.2	Expectation of a single random variable		149
	4.3	Transform methods		156
	4.4	Expectation of multiple random variables		162
	4.5	Probability bounds		164
		Notes		16/
		Problems		1/0
_	6	Exam preparation		183
5	Cumulative distribution functions and their applications			184
	5.1	Continuous random variables		185
	5.2	Discrete random variables		194
	5.5 5 1	winxed random variables and their adfe		19/
	5.4 5.5	runchons of random variables and their calls		200
	5.5 5.6	Flopenes of cuis		203
	5.0 5.7	Paliability		207 215
	5.1	Kenaoliny		213

viii

Contents

		Notes	219
		Problems	222
		Exam preparation	238
6	Stati	istics	240
	6.1	Parameter estimators and their properties	240
	6.2	Histograms	244
	6.3	Confidence intervals for the mean – known variance	250
	6.4	Confidence intervals for the mean – unknown variance	253
	6.5	Confidence intervals for Gaussian data	256
	6.6	Hypothesis tests for the mean	262
	6.7	Regression and curve fitting	267
	6.8	Monte Carlo estimation	271
		Notes	273
		Problems	276
		Exam preparation	285
7	Biva	riate random variables	287
	7.1	Joint and marginal probabilities	287
	7.2	Jointly continuous random variables	295
	7.3	Conditional probability and expectation	302
	7.4	The bivariate normal	309
	7.5	Extension to three or more random variables	314
		Notes	317
		Problems	319
		Exam preparation	328
8	Intro	oduction to random vectors	330
	8.1	Review of matrix operations	330
	8.2	Random vectors and random matrices	333
	8.3	Transformations of random vectors	340
	8.4	Linear estimation of random vectors (Wiener filters)	344
	8.5	Estimation of covariance matrices	348
	8.6	Nonlinear estimation of random vectors	350
		Notes	354
		Problems	354
		Exam preparation	360
9	Gau	ssian random vectors	362
	9.1	Introduction	362
	9.2	Definition of the multivariate Gaussian	363
	9.3	Characteristic function	365
	9.4	Density function	367
	9.5	Conditional expectation and conditional probability	369
	9.6	Complex random variables and vectors	371
		Notes	373
		Problems	375
		Exam preparation	382
10	Intro	oduction to random processes	383
	10.1	Definition and examples	383
	10.2	Characterization of random processes	388
	10.3	Strict-sense and wide-sense stationary processes	393
	10.4	WSS processes through LTI systems	401
	10.5	Power spectral densities for WSS processes	403
	10.6	Characterization of correlation functions	410
	10.7	The matched filter	412
	10.8	The Wiener filter	417

Contents

	10.9	The Wiener–Khinchin theorem	421
	10.10	Mean-square ergodic theorem for WSS processes	423
	10.11	Power spectral densities for non-WSS processes	425
		Notes	427
		Problems	429
		Exam preparation	440
11	Adva	anced concepts in random processes	443
	11.1	The Poisson process	443
	11.2	Renewal processes	452
	11.3	The Wiener process	453
	11.4	Specification of random processes	459
		Notes	466
		Problems	466
		Exam preparation	475
12	Intro	oduction to Markov chains	476
	12.1	Preliminary results	476
	12.2	Discrete-time Markov chains	477
	12.3	Recurrent and transient states	488
	12.4	Limiting <i>n</i> -step transition probabilities	496
	12.5	Continuous-time Markov chains	502
		Notes	507
		Problems	509
		Exam preparation	515
13	Mea	n convergence and applications	517
	13.1	Convergence in mean of order <i>p</i>	518
	13.2	Normed vector spaces of random variables	522
	13.3	The Karhunen–Loève expansion	527
	13.4	The Wiener integral (again)	532
	13.5	Projections, orthogonality principle, projection theorem	534
	13.6	Conditional expectation and probability	537
	13.7	The spectral representation	545
		Notes	549
		Problems	550
	0.1	Exam preparation	562
14	Othe	er modes of convergence	564
	14.1	Convergence in probability	564
	14.2	A largest sum a summer as	500
	14.5	Annost-sure convergence	570
		Notes Broblema	590
		Fionenis	580
15	Salf	Exam preparation	501
15	15 1	Solf similarity in continuous time	501
	15.1	Self similarity in discrete time	591
	15.2	Asymptotic second order self similarity	601
	15.5	Long range dependence	604
	15.4	ABMA processes	604
	15.5	ARIMA processes	600
	15.0	Problems	610
		Fyam preparation	613
	Rihli	logranhy	615
	Inde	v v	619
	mut	2 x	010

ix

Chapter dependencies

Preface

Intended audience

This book is a primary text for **graduate-level courses** in probability and random processes that are typically offered in electrical and computer engineering departments. The text starts from first principles and contains more than enough material for a two-semester sequence. The **level of the text** varies from advanced undergraduate to graduate as the material progresses. The principal **prerequisite** is the usual undergraduate electrical and computer engineering course on signals and systems, e.g., Haykin and Van Veen [25] or Oppenheim and Willsky [39] (see the Bibliography at the end of the book). However, later chapters that deal with random vectors assume some familiarity with linear algebra; e.g., determinants and matrix inverses.

How to use the book

A first course. In a course that assumes at most a modest background in probability, the core of the offering would include Chapters 1–5 and 7. These cover the basics of probability and discrete and continuous random variables. As the chapter dependencies graph on the preceding page indicates, there is considerable flexibility in the selection and ordering of additional material as the instructor sees fit.

A second course. In a course that assumes a solid background in the basics of probability and discrete and continuous random variables, the material in Chapters 1–5 and 7 can be reviewed quickly. In such a review, the instructor may want include sections and problems marked with a *, as these indicate more challenging material that might not be appropriate in a first course. Following the review, the core of the offering would include Chapters 8, 9, 10 (Sections 10.1–10.6), and Chapter 11. Additional material from Chapters 12–15 can be included to meet course goals and objectives.

Level of course offerings. In any course offering, the level can be adapted to the background of the class by omitting or including the more advanced sections, remarks, and problems that are marked with a *. In addition, discussions of a highly technical nature are placed in a Notes section at the end of the chapter in which they occur. Pointers to these discussions are indicated by **boldface numerical superscripts** in the text. These notes can be omitted or included as the instructor sees fit.

Chapter features

• Key equations are boxed:

$$\mathsf{P}(A|B) := \frac{\mathsf{P}(A \cap B)}{\mathsf{P}(B)}.$$

• Important text passages are highlighted:

Two events *A* and *B* are said to be independent if $P(A \cap B) = P(A)P(B)$.

xii

Preface

- Tables of discrete random variables and of Fourier transform pairs are found inside the front cover. A table of continuous random variables is found inside the back cover.
- The index was compiled as the book was written. Hence, there are many cross-references to related information. For example, see "chi-squared random variable."
- When cumulative distribution functions or other functions are encountered that do not have a closed form, MATLAB commands are given for computing them; see "Matlab commands" in the index for a list. The use of many commands is illustrated in the examples and the problems throughout most of the text. Although some commands require the MATLAB Statistics Toolbox, alternative methods are also suggested; e.g., the use of erf and erfinv for normcdf and norminv.
- Each chapter contains a **Notes** section. Throughout each chapter, numerical superscripts refer to discussions in the Notes section. These notes are usually rather technical and address subtleties of the theory.
- Each chapter contains a **Problems** section. There are more than 800 problems throughout the book. Problems are grouped according to the section they are based on, and this is clearly indicated. This enables the student to refer to the appropriate part of the text for background relating to particular problems, and it enables the instructor to make up assignments more quickly. In chapters intended for a first course, **the more challenging problems are marked with a***. Problems requiring MATLAB are indicated by the label MATLAB.
- Each chapter contains an **Exam preparation** section. This serves as a chapter summary, drawing attention to key concepts and formulas.

Acknowledgements

The writing of this book has been greatly improved by the suggestions of many people.

At the University of Wisconsin–Madison, the sharp eyes of the students in my classes on probability and random processes, my research students, and my postdocs have helped me fix countless typos and improve explanations of several topics. My colleagues here have been generous with their comments and suggestions. Professor Rajeev Agrawal, now with Motorola, convinced me to treat discrete random variables before continuous random variables. Discussions with Professor Bob Barmish on robustness of rational transfer functions led to Problems 38–40 in Chapter 5. I am especially grateful to Professors Jim Bucklew, Yu Hen Hu, and Akbar Sayeed, who taught from early, unpolished versions of the manuscript.

Colleagues at other universities and students in their classes have also been generous with their support. I thank Professors Toby Berger, Edwin Chong, and Dave Neuhoff, who have used recent manuscripts in teaching classes on probability and random processes and have provided me with detailed reviews. Special thanks go to Professor Tom Denney for his multiple careful reviews of each chapter.

Since writing is a solitary process, I am grateful to be surrounded by many supportive family members. I especially thank my wife and son for their endless patience and faith in me and this book, and I thank my parents for their encouragement and help when I was preoccupied with writing.