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Introduction

To give a feeling of what this book is about, it is perhaps best to take a look at some real-life

examples. Real-life examples have the disadvantage of giving rise to a lot of discussion on

the interpretation of the data, as the authors have experienced when they started a lecture with

a real-life example. This often distracted the audience from the main message of the lecture.

But they have the advantage of “sticking in the mind,” which might be more important than

the temporary distraction they might cause. Therefore, the first four sections of this chapter

are about real data. Section 1.1 is concerned with the estimation of the expected duration

of ice (in days) at Lake Mendota in Wisconsin, assuming these expected durations decrease

in time. In Section 1.2, a data set on time-till-onset of a nonlethal lung tumor for mice is

studied. There are two groups of mice, one living in a conventional environment and the

other in a germ-free environment. The main question then is whether the distribution of the

time-till-onset of the tumor is affected by the choice of environment. The complication is that

the times of onset are not precisely observed, but subject to censoring. The third example,

in Section 1.3, concerns the estimation of a relatively complicated quantity, the transmission

potential of a disease, also based on censored data on hepatitis A in Bulgaria. Section 1.4

introduces the Bangkok Metropolitan Administration injecting drug users cohort study, which

is further analyzed in Chapter 12, using methods that were developed for competing risk

models.

In Section 1.5, a particular shape constrained estimation problem is considered. It is argued

that this problem (and many of the other problems to be considered in this book) can also

be viewed from another perspective; for example, as inverse problem, mixture model, or

censoring problem. As will be seen later in this book, these points of view immediately

suggest methods one could use for estimating shape constrained functions and methods

one could use to compute these. Finally, Section 1.6 gives an outline of the content of this

book.

1.1 Is There a Warming-up of Lake Mendota?

Lake Mendota has been called the most studied lake in the United States. One of the reasons

we start with this example is that it appealed very much to one of the authors when he first

read the book Barlow et al., 1972. In that book it is also the first example. The authors

study the number of days until freezing in the years 1854 + i, i = 1, . . . , 111, and state:

“According to a simple, useful (if not completely realistic) model, the days till freezing

X i are observations on a normal distribution with unknown means μi , i = 1, 2, . . . , 111,

and a common variance σ
2.” The maximum likelihood estimates of μi under the restriction
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Table 1.1 Number of Days that Lake Mendota Was Frozen during Winter Seasons, Starting with the

Year 1855

118 151 121 96 110 117 132 104 125 118 125 123 110 127

131 99 126 144 136 126 91 130 62 112 99 161 78 124

119 124 128 131 113 88 75 111 97 112 101 101 91 110

100 130 111 107 105 89 126 108 97 94 83 106 98 101

108 99 88 115 102 116 115 82 110 81 96 125 104 105

124 103 106 96 107 98 65 115 91 94 101 121 105 97

105 96 82 116 114 92 98 101 104 96 109 122 114 81

85 92 114 111 95 126 105 108 117 112 113 120 65 98

91 108 113 110 105 97 105 107 88 115 123 118 99 93

96 54 111 85 107 89 87 97 93 88 99 108 94 74

119 102 47 82 53 115 21 89 80 101 95 66 106 97

87 109 57

Note: The order is in increasing years from left to right and (next) row-wise.

μ1 ≤ · · · ≤ μ111 minimize (as a function of the μi ):

111
�

i=1

(X i − μi )
2
,

subject to μ1 ≤ · · · ≤ μ111. This is a so-called isotonic estimator: the maximum likelihood

estimates of (μ1, . . . , μ111) under the restriction that the μi are nondecreasing in i (time).

We choose to use the data on duration of ice in days and estimate by isotonic regression

(not assuming normality) the nonparametric regression function on these for 157 seasons,

that is, we minimize

157
�

i=1

(Yi − νi )
2
,

subject to ν1 ≥ · · · ≥ ν157, where Yi is the number of days the lake was frozen in season

i . Note that we have 157 seasons instead of 111, since we have more data on seasons than

in 1972. The data are obtained from http://www.aos.wisc.edu/∼sco/lakes/Mendota-ice.html

and given in Table 1.1, and start in the year 1855.

How can this isotonic regression estimate be computed? We consider the so-called cumu-

lative sum (or cusum) diagram, consisting of the points

(0, 0), (1, Y1), (2, Y1 + Y2), . . . ,

⎛

⎝i,

i
�

j=1

Y j

⎞

⎠ , . . . ,

⎛

⎝157,

157
�

j=1

Y j

⎞

⎠ .

For this set of points we compute the least concave majorant. The solution is the left

continuous slope of the least concave majorant of the y-values in the diagram. To show a

more clearly visible difference between the cusum diagram and its least concave majorant,

we subtract the trend (line between endpoints) in Figure 1.1b.

The resulting estimate is shown in Figure 1.2a and its smoothed version is shown in

Figure 1.2b. The hypothesis that there is indeed a warming-up is not tested in Barlow et al.,

1972, but can be tested with the methods of the present book, either using the isotonic least
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Figure 1.1 Cusum diagram for Lake Mendota data, without least concave majorant
(a) and with least concave majorant (and minus the line connecting the two end

points) (b).

squares (LS) estimate or the smoothed isotonic LS estimate. The smoothed isotonic LS

estimate avoids the bad behavior of the ordinary isotonic LS estimate at the boundary, and

will generally be consistent in situations where the LS estimate itself will be inconsistent, as

will be discussed in this book.

1.2 Onset of Nonlethal Lung Tumor

For two groups of mice, the ages at death (in days) were measured. One group was kept in

a germ-free environment and the other in a conventional environment. The distribution of

interest is that of the age of onset of a lung tumor of type RFM. For mice, this type of tumor

is nonlethal (according to Hoel and Walburg, 1972, from which this example is taken). At the
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Figure 1.2 Isotonic estimators for the warming trend of Lake Mendota, without
smoothing (a) and with smoothing (b).
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Table 1.2 Inspection Times (Ages at Death) of the Mice, with Indicator Whether Tumor was Found

at Time of Inspection (� = 1) or Not (� = 0)

CE & � = 1 381 477 485 515 539 563 565 582 603 616

624 650 651 656 659 672 679 698 702 709

723 731 775 779 795 811 839

CE & � = 0 45 198 215 217 257 262 266 371 431 447

454 459 475 479 484 500 502 503 505 508

516 531 541 553 556 570 572 575 577 585

588 594 600 601 608 614 616 632 632 638

642 642 642 644 644 647 647 653 659 660

662 663 667 667 673 673 677 689 693 718

720 721 728 760 762 773 777 815 886

GE & � = 0 546 609 692 692 710 752 773 781 782 789

808 810 814 842 846 851 871 873 876 888

888 890 894 896 911 913 914 914 916 921

921 926 936 945 1008

GE & � = 1 412 524 647 648 695 785 814 817 851 880

913 942 986

Note: The first group concerns mice living in a conventional environment (CE), the second mice living

in a germ-free environment (GE).

time of death, it was checked whether the mouse did develop the lung tumor or not. The ages

at death can therefore be viewed as “inspection times,” whereas the event time of interest

in this context is the time at which the tumor starts to grow. The data, taken from Hoel and

Walburg, 1972, are given in Table 1.2.

Hoel and Walburg, 1972, first treat the lung tumors as a lethal disease, although they

mention that this is incorrect, viewing the data as right censored. Then they calculate the

Kaplan-Meier estimates for the distribution functions of the mortality due to lung cancer in

the two groups under this assumption. The Kaplan-Meier estimates are shown in Figure 1.3.

The figure suggests that the conventional group had a higher incidence or earlier occurrence

of lung tumors than the germ-free group. They also applied the Breslow test for statistical

significance, which was found to be significant an the 5% level. But they also note that in their

opinion this is actually due to the incorrect assumption that the lung cancer is lethal for these

mice and that the right estimator for the onset of the lung cancer is given by the maximum

likelihood estimator (MLE) for current status data. The terminology “current status data” is

still not used, but they propose an estimator that is actually just the MLE for current status

data and refer for this to Ayer et al., 1955.

An exposition on the current status model is given in Section 2.3. The setting is as

follows. We have a (unobservable) sample X1, X2, . . . , Xn , drawn from a distribution with

distribution function F , in this case representing the times of onset of the lung cancer. Instead

of observing the X i s, one only observes for each i whether or not X i ≤ Ti for some random

Ti (independent of the other T j s and all X j s), where in this case the Ti are the ages at death.

More formally, instead of observing X i s, one observes

(Ti , �i ) = (Ti , 1[X i ≤Ti ]).
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Figure 1.3 The Kaplan-Meier estimates of the distribution functions of the
mortality due to lung cancer in the two groups for the data of Hoel and Walburg,

under the assumption that the lung cancer is lethal. The solid curve is the estimate
for the conventional group and the dashed curve the estimate for the mice in the

germ-free environment.

One could say that the i th observation represents the current status of item X i (onset of lung

cancer) at time Ti .

The problem is to estimate the unknown distribution function F of the X i , using the

indirect information in the data. Denote the realized Ti by ti and the associated realized

values of the �i by δi . For this problem the log likelihood function in F (conditional on the

Ti s) can be shown to be

�(F) =

n∑

i=1

{δi log F(ti ) + (1 − δi ) log(1 − F(ti ))} . (1.1)

The (nonparametric) MLE maximizes � over the class of all distribution functions. Since

distribution functions are by definition nondecreasing, computing the maximum likelihood

estimator poses a shape restricted optimization problem in a natural way. As can be seen

from (1.1), the value of � only depends on the values that F takes at the observed time points

ti ; about the values between these points we have no information. Hence one can choose

to consider only distribution functions that are constant between successive observed time

points ti . The MLEs can then actually be computed by a procedure similar to the procedure in

Section 1.1, since they can be characterized as the left-continuous slopes of the appropriate

cusum diagrams.
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Figure 1.4 The MLEs and SMLEs for the data of Hoel and Walburg. The solid
curves are the estimates of the distribution function of the time of start of the lung
tumor of type RFM for the conventional group and the dashed curves the estimates
for the mice in the germ-free environment. The dotted curve is the SMLE, based on

the combined samples, with bandwidth h = 1000n
−1/5

≈ 370.1.

The MLEs F̂ni together with the smoothed maximum likelihood estimators (SMLEs) F̃ni

for the two groups are shown in Figure 1.4. If F̂ni is the MLE for group i , i = 1, 2, where,

for example, 1 corresponds to the conventional group and 2 to the germ-free group, then the

corresponding SMLEs are given by

F̃ni (t) =

∫

K

(

t − x

h

)

d F̂ni (x), (1.2)

where h > 0 is a bandwidth, which is chosen to be h = 1000n
−1/5

≈ 370.1 in this case and

K is the integrated kernel

K(x) =

∫

x

−∞

K (u) du, (1.3)

where K is a symmetric kernel with support [−1, 1], for example the triweight kernel

K (u) =

35

32

(

1 − u
2
)3

1[−1,1](u).

For values close to the boundary, we use in fact a boundary correction, explained later in the

book. The MLEs and SMLEs for the two groups are shown in Figure 1.4.
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Figure 1.5 The kernel estimate of the density of the 10,000 bootstrap values of V ∗

n

from F̃n for the data of Hoel and Walburg, using a bandwidth h = 0.5. The dashed
curve is the corresponding normal density, scaled with the mean and variance

of the bootstrap values.

We can now test the hypothesis of equality of the two distributions with a likelihood ratio

test, based on the test statistic, Vn , defined by

Vn =

n1
∑

i=1

{

�i log
F̂n1(Ti )

F̂n(Ti )
+ (1 − �i ) log

1 − F̂n1(Ti )

1 − F̂n(Ti )

}

+

n1+n2
∑

i=n1+1

{

�i log
F̂n2(Ti )

F̂n(Ti )
+ (1 − �i ) log

1 − F̂n2(Ti )

1 − F̂n(Ti )

}

,

where F̂n is the MLE, based on the combined samples.

In the present case we have: n1 = 96, n2 = 48 and n = n1 + n2 = 144. The test statistic

has the value Vn = 2.5580. For the purpose of bootstrapping, the distribution function of the

onset of the tumor, under the null hypothesis of no difference in the distribution in the two

samples, was estimated by the SMLE F̃n , based on the combined samples (the dotted curve

in Figure 1.4). Next the values of the �i s were resampled, keeping the observation times Ti

fixed, by letting the �∗

i be independent Bernoulli (F̃n(Ti )) random variables, where F̃n was

the SMLE, based on the combined samples, with the bandwidth h = 1000n−1/5
≈ 370.1.

This gave, for 10,000 bootstrap samples, a p-value of 0.6009. A picture of an estimate

of the density of V ∗

n for these 10,000 bootstrap samples, made in R, is shown in Figure 1.5.
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Directly resampling from the MLE for the combined samples gave a p-value of 0.599, so a

value very close to the values obtained by resampling from the smooth estimate, based on the

SMLE. Further work on tests of this type can be found in Chapter 9. There we also discuss

the possible validity or invalidity of bootstrap resampling from F̃n or F̂n in this context. In

any case, the analysis based on the current status model instead of the right-censoring model

gives no indication of a difference in susceptibility to a lung tumor of type RFM in the two

groups.

1.3 The Transmission Potential of a Disease

Keiding, 1991, analyzed demographical data on hepatitis A in Bulgaria. He notes that for the

planning of vaccination programs it is important to estimate the transmission potential RV ,

which measures the number of secondary cases one case could produce during the infectious

period. Informally stated: the transmission potential is the expected number of other people

one infects if one is infected. If this number is bigger than 1, there is the danger of an

epidemic spread.

It was shown by Dietz and Schenzle, 1985, that for virus infections with a short infectious

period this number is given by:

RV =

∫

∞

0 exp
{

−

∫ a

0 μ(u) du
}

λ(a)2V (a) da
∫

∞

0 exp
{

−

∫ a

0 μ(u) du
}

λ(a)2 exp
{

−

∫ a

0 λ(u) du
}

da
, (1.4)

where λ(a) is the infection intensity, V (x) the probability that an individual of age x has

not yet been vaccinated and the mortality μ can usually be taken to be known from official

vital statistics. Table 2 in Keiding, 1991, which is reproduced in Table 1.3, contains the

prevalence data from Bulgaria on the presence of antibodies for hepatitis A, which can be

used in estimating the infection intensity λ; V (a) is a quantity one can manipulate. The ages

71, 84 and 85, for which there were no observations in Table 2 in Keiding, 1991, are omitted

from our Table 1.3.

Just as in Section 1.2, the data available for estimating λ are current status data: if a person

in the survey has antibodies, it is clear the he/she has been infected at a time preceding

the check on antibodies, otherwise this person can still obtain antibodies in future or may

never get the disease. In this case, the survey contained 850 people, and the MLE F̂n of the

distribution function of age at which people were infected is shown in Figure 1.6a, together

with the corresponding SMLE F̃n , given by

F̃n(t) =

∫

K

(

t − x

h

)

d F̂n(x), (1.5)

where K is an integrated kernel, just as in (1.2) (see (1.3)).

The corresponding density estimate is defined by

f̃n(t) = h−1

∫

K

(

t − x

h

)

d F̂n(x), (1.6)

where the bandwidth is usually larger than in estimating the distribution function (the typical

orders are n−1/7 and n−1/5, respectively). An estimate of the hazard is given in Figure 1.6b,

where the bandwidths in estimating F and f were 35 and 45, respectively. Note that by
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1.3 The Transmission Potential of a Disease 9

Table 1.3 Current Status Data on Hepatitis A in Bulgaria

Age Virus Positive Total Age Virus Positive Total

1 3 16 43 7 10

2 3 15 44 5 5

3 3 16 45 7 7

4 4 13 46 9 9

5 7 12 47 9 9

6 4 15 48 22 22

7 3 12 49 6 7

8 4 11 50 10 10

9 7 10 51 6 6

10 8 15 52 13 14

11 2 7 53 8 8

12 3 7 54 7 7

13 2 11 55 13 13

14 0 1 56 11 11

15 5 16 57 8 8

16 13 41 58 8 8

17 1 2 59 9 10

18 3 6 60 13 16

19 15 32 61 5 5

20 22 37 62 5 6

21 15 24 63 5 5

22 7 10 64 5 5

23 8 10 65 10 10

24 7 11 66 8 8

25 12 15 67 4 4

26 5 10 68 5 5

27 10 13 69 4 5

28 15 19 70 8 8

29 9 12 72 9 9

30 9 9 73 1 1

31 9 14 74 4 4

32 8 10 75 7 7

33 9 11 76 6 6

34 8 9 77 2 2

35 9 14 78 3 3

36 13 14 79 2 2

37 6 7 80 4 4

38 15 16 81 1 1

39 11 13 82 1 1

40 6 8 83 2 2

41 8 8 86 1 1

42 13 14

choosing the bandwidths in this way, f̃n is no longer the derivative of F̃n . If one wants to keep

this relation, one has to take equal bandwidths for F̃n and f̃n , as was done in Groeneboom’s

discussion in Keiding, 1991; the estimator of the hazard obtained in this way was not

very different from our estimator in 1.6b, though. Bootstrap methods for determining the
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Figure 1.6 MLE (step function) and SMLE (dashed) of the distribution
function (a) and estimate of the hazard rate of the age of infection (b) based

on the hepatitis A data.

bandwidths for this example can also be found on p. 400–401 of the discussion in Keiding,

1991, and in Groeneboom et al., 2010.

By methods of the present book one can derive distribution theory for estimates of the

transmission potential (1.4). Smoothing methods are unavoidable; note, for example, that

one cannot (sensibly) differentiate the MLE itself, since it is a step function, so one cannot

estimate the infection intensity (hazard) α without applying some kind of smoothing. On

the other hand, the transmission potential is a global functional, so one has to combine local

and global methods for obtaining its distribution. The interplay between local and global

methods is one of the themes of our book.

1.4 The Bangkok Cohort Study

The Bangkok Metropolitan Administration injecting drug users cohort study (Kitayaporn

et al., 1998, and Vanichseni et al., 2001) was started in 1995 to assess (among other things)

the feasibility of conducting a phase III HIV vaccine efficacy trial for injecting drug users in

Bangkok. The data on a subset of 1,365 injecting drug users who were below 35 years of age

in this study were analyzed by Maathuis and Hudgens, 2011, and Li and Fine, 2013. In this

group, 392 were HIV positive, with 114 infected with subtype B, 237 infected with subtype

E, 5 infected by another mixed subtype, and 36 infected with missing subtype. The subjects

with other, mixed, or missing subtypes were grouped in a single category.

In Maathuis and Hudgens, 2011, the maximum likelihood estimator (MLE) for the subtype-

specific cumulative incidence of HIV is computed, as well as a so-called naive estimator, based

on analyzing one category such as the type B subjects, ignoring the data on the other types.

There also confidence intervals are given, based on the naive estimators, using the likelihood

ratio test method developed in Banerjee and Wellner, 2001, and Banerjee and Wellner, 2005.

Li and Fine, 2013, compute both the regular MLE and a smoothed version of the MLE

(called the SMLE) and use theory developed in Groeneboom et al., 2010, for constructing
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