Index

accelerator mass spectrometry, 150, 157
acoustic Doppler current profiler, 28
adjoint-state methods, 46
Advanced Microwave Sensing Radiometer (AMSR-E), 41
Advanced Very High Resolution Radiometer (AVHRR), 40, 44
adjoint-state methods, 46
Advanced Microwave Sensing Radiometer (AMSR-E), 41
Advanced Very High Resolution Radiometer (AVHRR), 40, 44
analytical models, for heat flow, 173–174, 178
analytical step-response function, 82
analytic-element method, 60
anion exclusion, 151
anions, as tracers, 151
antecedent recession curve, 119
apparent age, use of term, 153
aquifer geometry, and geophysical techniques, 9
aquifers, confined, in groundwater-flow model, 59–60
aquifers, unconfined, water-table fluctuations in, 119–122
aquifer storage, 76
aquifer tests, for specific yield, 125
aquifer vulnerability analysis, 70–72
arid climate, 4, 192, 194, 196
arid regions: and CMB method, 142–145
for groundwater, 156–157
for unsaturated zone, 144
water-budget equation for, 142–143
chlorine-36 (36Cl), 136–137, 150, 152
chlorine-36 concentration-depth profile, 150
chlorofluorocarbons (CFCs), 136, 158–160, 163–164
classification system, for US groundwater regions, 189–190
clamp, and recharge processes, 7–8
climatic trends, defined, 4
climatic, and recharge rates, 6–7
cokriging, 69
colorado plateau region, 195
columbia lava plateau region, 194–195
column-drainage approach, for estimating specific yield, 124–125
combined watershed/groundwater-flow models, 63–65
Community Land Model (CLM), 39
comparison, of estimation methods, 182–189
computer models, 1, see also names of models
computer programs: for hydrograph separation, 86
for surface-water hydrograph analysis and flow-duration analysis, 95, see also names of programs
concentration-depth profiles, 138–139
coreal models, 2, 74
consistency with assumptions, 204
development of, 5–11, 180, 190–191
for different groundwater regions, 189–203
and estimation methods, 5, 14, 180–204
incorrect, 12, 19, 182
informed by recharge estimates, 204
and integration of multiple factors, 11
and intersite comparison, 11
for recharge in urban settings, 202–203
revaluation of, 182
and use of existing data, 11
Australia: Monavale catchment, 56–57
Murray Basin, 145–146
Tomago sand beds (Newcastle), 131
Western Australia, 106–107
Australian National University, 150
available water capacity (AWC), use of term, 37
AVI, 70
bank storage, use of term, 75
base flow, 76–77, 94–95
estimating, 83–84
base-flow index (BFI), 77
Basin Characterization Model (BCM), 70, 192
best fit, 43, 46
bomb-pulse concentration peak, 162
bomb-pulse tracers, 137, 145, 147–150
borehole GPR, 99
bromide (Br), 137, 151
bucket models, 48–49, 63
California: Sagehen Creek watershed (Truckee), 64–65
California Irrigation Management Information System (CIMIS), 34
carbon-14 (14C), 62, 157–158, 195
change in storage, 102–103
in water-budget methods, 24–27, 34, 41
in WTF method, 118
chemical isotopic streamflow hydrograph analysis, 91–94
chemical tracer methods, 136–165
time: Inner Mongolia, 149
chloride (Cl), 142–146, 151–152, 156–157, 164
atmospheric, 142
deposition, 137, 144, 157
environmental, 145–146
meteoric, 142
as tracer, 136–137
chloride concentration-depth profiles, 145
chloride mass-balance (CMB) age, 145
chloride mass-balance (CMB) equation, 143
chloride mass-balance (CMB) method, 142–145
for groundwater, 156–157
for unsaturated zone, 144
water-budget equation for, 142–143
chlorine-36 (36Cl), 136–137, 150, 152
chlorine-36 concentration-depth profile, 150
chloorofluorocarbons (CFCs), 136, 158–160, 163–164
classification system, for US groundwater regions, 189–190
clamp, and recharge processes, 7–8
climatic trends, defined, 4
climatic, and recharge rates, 6–7
cokriging, 69
colorado plateau region, 195
columbia lava plateau region, 194–195
column-drainage approach, for estimating specific yield, 124–125
combined watershed/groundwater-flow models, 63–65
Community Land Model (CLM), 39
comparison, of estimation methods, 182–189
computer models, 1, see also names of models
computer programs: for hydrograph separation, 86
for surface-water hydrograph analysis and flow-duration analysis, 95, see also names of programs
concentration-depth profiles, 138–139
concealional models, 2, 74
consistency with assumptions, 204
development of, 5–11, 180, 190–191
for different groundwater regions, 189–203
and estimation methods, 5, 14, 180–204
incorrect, 12, 19, 182
informed by recharge estimates, 204
and integration of multiple factors, 11
and intersite comparison, 11
for recharge in urban settings, 202–203
revaluation of, 182
and use of existing data, 11
Conceptual models (continued)
- and water budget, 15–16, 42
- of Yucca Mountain water flow, 193–194
- condensation, as heat transport process, 167
- conductive heat flow, use of term, 167–168
- contaminants in groundwater, as tracers, 152
- contamination: and use of CFCs, 160
- vulnerability to, 1, 11, 44, 70–72
- continuity equation, 57
- control volume: for local-scale water-budget equation, 21, 28
- for water-budget analysis, 15, 16
- crop coefficient, 32
- Darcy equation, 12, 28, 35, 50, 57, 59, 82, 107, 117
- Darcy methods, 74, 82, 116
- and residual water-budget method, 29–30
- for saturated zone, 132–133
- for unsaturated zone, 97, 107–110
- Darcy’s Law, 132–133
- data collection, inaccuracies in, 12
- data sources, 21–22, 44
- Daymet database of precipitation, 23–24
- del values, 147
- deuterium (D), 146–147
- and treatment, 11
- and remotely sensed data, 41
- digital filtering, 87
- direct recharge, use of term, 3
- discharge processes, and subsurface geology, 9
- dissolved inorganic carbon (DIC), 157
- distillation, azotropic/vacuum, 147
- distributed temperature sensors (DTS), 169, 174
- downsampling, 188
- drainage: distinguished from recharge, 17
- point estimates of, 116
- use of term, 4, 97, 137–138, 166, 182
- DRASTIC, 70–71
- Drexel University Laboratory for Climatology, 36
- due diligence, for application of methods, 204
- dye tracers, 151–152
- dynamic feedback effect, 2, 65
- earthquakes, and WTF, 122
- eddy correlation, 23–24
- electrical conductivity, 144
- electromagnetic induction (EMI) method, 99
- electromagnetic (EM) sensors, 98
- electron capture detector, 159, 161
- El Niño/Southern Oscillation, 8
- and WTF, 120–121
- and upscaling, 66–67
- end-member mixing analysis (EMMA), 91–92
- two-member model, 92
- energy-balance Bowen ratio (EBBR), 23–24
- England: Chalk and Triassic Sandstone aquifers, 105–106
- Chalk aquifer, Fleam Dyke, 114–115
- entrapped air, 121, 159, 161
- ephemeral streams, 75, 173–174, 191–192, 196
- and streamflow duration curves, 84–85
- EPIK, 70
- equilibrium-tension lysimeter (ETL), 112, 115
- error, sources of, 181–182
- error analysis, 12, 19–21, 181–182
- see also uncertainty estimation equations, 32–34
- in empirical models, 43
- and GIS, 69
- and upscaling, 66–67
- and WTF, 120–121
- and water-budget methods, 29–31
- local-scale application of water-budget methods, 39–41
- lysimeter, 113–115
- mesoscale application of water-budget methods, 35–38
- methods based on Darcy equation, 133
- Middle Rio Grande Basin (New Mexico), 61–62, 158
- Mirror Lake (New Hampshire), 61
- models based on Richards equation, 52
- Monavale catchment (Australia), 56–57
- Murray Basin, Australia, 145–146
- Namibia, 71–72
- northwestern Illinois, 29–30
- Orange County (Florida), 49–50
- Panther Creek watershed (Illinois), 35
- Pennsylvania streams, 90
estimation methods for, 182
in groundwater-flow models, 58–59
and heat tracers, 173–179
from losing stream, 76
and methods based on surface-
water data, 74
and stream water-budget meth-
ods, 94
and upsampling, 66
fractured-rock systems, and WTF, 127–129
France: agricultural fields (Greno-
ble), 110
frequency of measurements, in WTF
method, 119
gaining stream: and stream water-
budget method, 78
temperature and envelope, 173
use of term, 74–75
gamma-ray spectrometry, aircraft-
mounted, 34
gardner, W.R., 108, 142
gas chromatograph, 159, 161
dissipation probes (HDP), 100–101
heat flow, theory of, 167–169
heat tracer methods, 166–179
helium-3 (3He) ingrowth method, 148
Henry’s Law, 159, 161
High Plains region, 195–197
HSFP watershed model, 198
HST3D, 168
humid region: and applied tracer
tests, 138, 150–151
depth of ZFP, 105
and direct evapotranspiration, 76
and gaining streams, 75
and hydrograph analysis, 95
and lysimetry, 142
and streamflow data, 74
and tritium analysis, 147
and unsaturated-zone CMB meth-
ods, 144
and unsaturated-zone Darcy meth-
ods, 107
and WTF method, 120
hydraulic conductivity, 28–29, 82,
108, 116
saturated, 132–133
unsaturated, 100–102, 108–109
variability in, 97, 168
hydraulic conductivity curve, 50,
100–102
groundwater chemistry data, 152
groundwater-flow equation, 57, 60,
87
groundwater-flow models, 29, 35,
43, 57–62, 156, 204
cfc data, 160
cambridge.org
kinematic wave approximation, 51
kriging, 69
krypton hygrometer, 24
isotopes, as tracers, 136, 146–147
irrigation wells, 29
irrigation, 10
ions, as tracers, 136
ion-specific meter, 157
irrigation, 10
irrigation return flow, use of term, 10
irrigation wells, 29
isotopes, as tracers, 136, 146–147
kinematic wave approximation, 51
kriging, 69
krypton hygrometer, 24
lake stage, measurement of, 25
Lamont-Doherty Earth Observatory, 163
Landsat Thematic Mapper, 40–41, 44
land-surface models (LSMs), 39, 41, 48
land use: and recharge processes, 9–11
and recharge rates, 6–7
land-use change, 144–146, 164
Lawrence Livermore National Laboratory, 150
LEACHM, 52
leakage, use of term, 132
linear confidence intervals, 46–47
Lisse effect, 121
lithium, 152
local recharge, use of term, 3
localized recharge, use of term, 3
local scale, in application of water-budget methods, 16, 21–31
Long Island, eastern, 30–31
long-term climate variability, impact on recharge rates, 164
losing stream: and stream water-budget method, 78
and temperature envelope, 173
use of term, 75
lysimeter, 23–24, 110–116
lysimetry, 97, 110–116
macroscale: in application of water-budget methods, 16, 38–41
use of term, 38
Maryland: agricultural field, 52
Beaverdam Creek Basin, 129–131
mass-balance method, 139, 141, 147–148, 153, 156, 161
mass spectrometry, 163
matric potential, 99
MAXCRO4.3, 71
measurement errors, 12, 182
mesoscale: in application of water-budget methods, 16, 31–35
use of term, 31
microlysimeter, 112
micrometeorological methods, 23–34
microspheres, 152
microwave measurements, 34
microwave sensors, passive/active, 40–41
MIKE-SHE, 53, 63
Minnesota recharge map, 67–68
mixing, of water ages, 154–155
model calibration, 43, 45–46, 53, 55, 63, 134, 169, 178
automatic, 60–61
model complexity, 43, 72
modeling, general approach to, 4–5, 43–44
models: categories of, 43–44
and time scales, 188, see also bucket models
predictive capability of, 43, 53, 204
computer models
canceptual models
empirical models
numerical models
simulation models
moderate resolution imaging spectroradiometer (MODIS), 40
MODEFLOW-2005, 58–62, 64, 158
MODPATH, 62, 71, 158
Monte Carlo analysis, 20, 46–47
Montreal Protocol on Substances that Deplete the Ozone Layer, 158
mountain-block recharge, 191
mountain-front recharge, 191–192
multiple factors, integration of, in conceptual model, 11
multiple methods, use of, 12, 29–30, 135, 182, 188, 204
Multi-Resolution Land Characteristic (MRLC) consortium, 44
Namibia, 71–72
National Aeronautics and Space Administration (NASA) AQUA satellite mission, 41
National Atmospheric Deposition Program, 144
National Center for Atmospheric Research (NCAR) Hydrometeorological Networks, 21
National Center for Environmental Prediction Global Flux Archive, 40
National Cooperative Soil Survey, 44
National Land Cover Data 1992 (NLCD 92), 44
National Oceanic and Atmospheric Administration (NOAA): Geostationary Operational Environmental Satellite (GOES), 40–41
Multisensor Precipitation Estimation (MPE), 32
precipitation data, 21
Natural Resources Conservation Service (NRCS): SNOTEL network, 25
Soil Climate Analysis Network (SCAN), 27
SSURGO database, 37, 44
net infiltration, use of term, 4
neutron meter, 106, 109–110, 113–115, 127, 142
neutron moderation method, see also bucket models
predictive capability of, 43, 53, 204
computer models
canceptual models
empirical models
numerical models
simulation models
moderate resolution imaging spectroradiometer (MODIS), 40
MODEFLOW-2005, 58–62, 64, 158
MODPATH, 62, 71, 158
Monte Carlo analysis, 20, 46–47
Montreal Protocol on Substances that Deplete the Ozone Layer, 158
mountain-block recharge, 191
mountain-front recharge, 191–192
multiple factors, integration of, in conceptual model, 11
multiple methods, use of, 12, 29–30, 135, 182, 188, 204
Multi-Resolution Land Characteristic (MRLC) consortium, 44
Namibia, 71–72
National Aeronautics and Space Administration (NASA) AQUA satellite mission, 41
National Atmospheric Deposition Program, 144
National Center for Atmospheric Research (NCAR) Hydrometeorological Networks, 21
National Center for Environmental Prediction Global Flux Archive, 40
National Cooperative Soil Survey, 44
National Land Cover Data 1992 (NLCD 92), 44
National Oceanic and Atmospheric Administration (NOAA): Geostationary Operational Environmental Satellite (GOES), 40–41
Multisensor Precipitation Estimation (MPE), 32
precipitation data, 21
Natural Resources Conservation Service (NRCS): SNOTEL network, 25
Soil Climate Analysis Network (SCAN), 27
SSURGO database, 37, 44
net infiltration, use of term, 4
neutron meter, 106, 109–110, 113–115, 127, 142
neutron moderation method, 99
Nevada: Frenchman Flat, 171–172
INDEX

Trout Creek (north-central), 175–176
Truckee Meadows, 60–61
Yucca Mountain, 190–191
Nevada-Utah: Basin and Range carbonate rock aquifer system, 70
New Hampshire: Mirror Lake, 61
New Mexico: Las Cruces, 113–114
Middle Rio Grande (Albuquerque), 177
Middle Rio Grande Basin, 61–62, 158
Sevilleta Grasslands, 109–110
nitrates, 151
NOAH land surface model, 39, 41
nonlinear regression equations, 67
nonuniqueness, in inverse modeling, 46
North Dakota, 133
nuclear testing, 147, 149–150, 157
numerical models, 11–12
for groundwater flow, 82
for specific yield, 127
of water and heat transport, 170
objective function, use of term, 45–46
observation wells, 117, 125, 133–134
ocean tides, and WTF, 122
ocean water, 136
Ontario, Canada: Pine River (Angus, 176–177
overland flow, measurement of, 28
oxygen, stable isotope of (18O), 139
ozone depletion, 158
pan evaporation, 32–33
pan lysimeter, 112, 129
parameter estimation, 45, 49, 62, 158, 175, 177
PART, 90
peak-displacement method, 139–141, 145–150, 152–153, 161
pedotransfer functions, 101–102
Pennsylvania streamflow sites, 90
percent modern carbon (pmc), 157
percolation, use of term, 4
PEST, 46, 169, 175, 177
physical methods: based on data from saturated zone, 5, 117–135
based on data from unsaturated zone, 5, 164
physical realism, in combined models, 63
physical streamflow hydrograph analysis, 85–90
piezometer, 128–129, 132–133
piston-flow assumption, 139, 149, 154
piston-like flow, 145
use of term, 139
point estimate, 12–13, 44, 46, 69, 82, 94, 97, 112, 116, 152, 177, 181, 189, 195
use of term, 4
point sample, 154
pore water, 139, 141–144, 147–149
use of term, 4
potential evapotranspiration (PET), 36–37, 40, 47–48, 52–53, 55, 70–71
use of term, 32–34
potential recharge, 48, 70, 75–76, 144, 152
use of term, 3, 137–138, 166
power function model, 67, 70
precipitation: as dominant component in water budget, 7–8
measurement of, 19–23
temporal variability in, 7–8
in water-budget methods, 16–17, 21–23, 29–32, 40
precipitation events, duration and intensity of, 8
precipitation gauge, 21–23
precipitation rate, increasing, and increased recharge rates, 7
precipitation runoff modeling system (PRMS), 53–55
preferential flow, use of term, 139
pressure head, measurement of, 99–100
pressure transducers, 121
PRISM, 32, 70
pulse, water measurement as, 102–104
pulse tracer input, 137–139, 153
Purdue University, 150
purge and trap method, 159
RADARSAT-1, 41
radioactive waste storage, 193–194
radiometric methods, 148
radon, 91
rating tables, 28
ratio: of annual recharge to precipitation, 66
of recharge flux to hydraulic conductivity, 160
of recharge flux to porosity, 160
REESS, 90
recession-curve displacement, 74, 85, 87–90
recession curves, 88, 118–119, 134
automated techniques for generating, 119
recharge: systematic and random variation in, 6–7
use of term, 3, 137–138, 182
recharge characteristics, of US groundwater regions, 189–203
recharge date, use of term, 153
recharge estimates: as iterative process, 14
from artificial recharge operations, 2
from human-made drainage features, 2
inaccuracy in, 12
from irrigated areas, 2
spatial and temporal scales, 12–13
uncertainty in, 12
recharge maps, 71, 73
recharge potential, use of term, 70
recharge processes, and spatial-temporal variability, 6–7
recharge rates: actual, 12
and aquifer vulnerability, 70–71
average, 135
distinguished from sustainable yield, 6
reconnaissance tracer sampling of soil or groundwater, 164
reference evapotranspiration, use of term, 33
RefET, 34
regression techniques, and upscaling, 66–67
relative hydraulic conductivity, 101
totally sensed data: and GIS, 69–70
indirect use of, 41
remote sensing, 10, 204
for water-budget methods, 38–40
of stream temperatures, 169
remote-sensing tools, 4
residual water-budget method, 4, 15, 19
compared to Darcy method, 29–30
limitations of, 42
resistance probe, 142, 169
reverse Wieringermeer effect, 123
Richards equation, 138, 168
models based on, 50–52, 63
rooting depth, 102
root zone, 138
RORA, 90
ROSETTA, 51, 102
runoff diversions, urban, 10–11
safe yield, use of term, 6
sap-flow meter, 24
satellite data, for evapotranspiration estimates, 40
satellite remote sensing, 39
t SCREEN fog collector, 23
Seabrook, NJ, 36
sediment samples, for chloride analyses, 144
INDEX

978-0-521-86396-4 - Estimating Groundwater Recharge
Richard W. Healy

seepage measurement, 78–81, 94
seepage meter, 74, 79–81, 94
seepage run, 78–80
semiarid climate, 20, 192, 194–196, 199, 202
use of term, 4
semiarid region: and applied tracers, 150–151, 164
and chloride concentration, 141 and CMB method, 143–145 and focused recharge, 75, 85 and hydrograph separation, 95 phreatophytes, 76 and surface flow/runoff, 28 and water-budget uncertainty, 20 semihumid region, and lysimetry, 142 sensitivity analysis, 20, 57, 188 simulation models, 43–73 snow course, 34 snow pillow, 23
ideal, 137
introduced, 91
multiple, 165
natural environmental, 91, 136, 142–147, 156–158, 164, 188
types of, 136
in unsaturated zone, 138–152
in urban settings, 203, see also heat tracer methods
trace sampling, in unsaturated zone, 141–142
transfer-function model, 49–50, 63
travel time, from land surface to water table, 71
tritiogenic helium-3 (3Hetrit), 161–163
tritium (3H), 136–137, 147–149, 151, 161–164
tritium/helium-3 method, 154, 161–164
Two Source Energy Budget (TSEB) model, 39
UCODE, 46, 49, 62, 158
uncertainty: in recharge estimates, 12, 46
in regression equations, 67
with tracer methods, 165
in water budgets, 19–21
in WTF method, 119, 135
underflow, 191
Unglaciated Appalachians region, 200
Unglaciated Central region, 197–199
United States: groundwater regions, 189–203
southern High Plains, 145–146
unit-gradient assumption, 108–109, 116, 119
University of Miami, 163
UNSAT-H, 50
unsaturated zone: flow models, 204
measurement of physical properties, 97–102
physical methods, 97–116
water-budget models, 43, 47–52, 63
UNSODA, 102
upscale, 66–70, 188
urbanization, 10–11, 202–203
US Bureau of Reclamation Agrimet network, 34
US Commerce Department precipitation maps, 32
US Geological Survey, 27, 78
CFC laboratory, 154
data on chloride concentrations in groundwater, 157
groundwater data, 117
National Elevation Dataset (NED), 44
streamflow monitoring, 92
surface-flow data, 28
US Soil Conservation Service Curve Number Method, 34, 48
vegetation, and recharge processes, 9–11
vertical movement assumption, 104, 161–162
volume-balance method, for specific yield, 126
VS2DH, 168, 174–175, 177
VS2DI, 50–51, 127
Washington State: Puget Sound Lowland, 55–56
waste-disposal facilities, subsurface, location of, 1
water, heat capacity of, 168
water budget: and conceptual model, 5, 42, 204
uncertainty in, 19–21
water budget, preliminary, 5
water-budget analysis, 6
simple, 16–19
water-budget equation, 5–6, 57, 76
for an aquifer, 18–19
as basis for models, 43
as component of general circulation model, 15
in EMMA, 91
and errors in recharge estimates, 21
incorrect, 19
and recharge estimates, 42
uncertainty terms in, 21
for watershed model, 53
water-budget methods, 4, 15–42, 164
for estimating specific yield in fractured-rock systems, 129
for recharge in urban settings, 203
for specific yield, 126
unsaturated zone, 97
ZFP method as, 102
water-budget models, 15, 42
unsaturated zone, 43, 47–52, 63
water-budget transfer-function models, 49–50
water conservation equation, 50
water-flux meter, 112
water-level data, correcting, 122
water-level records, long-term, 119
water movement: linked to heat flow, 166–167
in unsaturated zone, 138–139
water-quality studies, and use of seepage meters, 81
water-retention curve, 50, 106, 123, 125
measurement of, 100–102
watershed models, 32, 35–36, 43, 52–57, 63, 70, 192, 194, 198–199, 204
water storage: in snowpacks, 25
in subsurface, 23–27, 102–103
in surface-water bodies, 25
water table, depth to, 9
and specific yield, 123
water-table fluctuation, in unconfined aquifers, 119–122
water-table fluctuation (WTF) method, 26, 117, 119, 133–135
saturated zone, 118–131
water-table height, change in, and specific yield, 123–124
water vapor movement, as heat transport process, 167
weighing lysimeter, 112, 134
well head protection rules, 71
well pumping, and WTF, 122
Western Mountain Ranges region, 191–192
wick lysimeter, 112–113
Wisconsin: Columbia County, 115
World Meteorological Organization, 21
zero-flux plane (ZFP), use of term, 3–4, 47, 138
zero-flux plane (ZFP) method, 24, 26, 79, 99, 102–107, 110, 116
zero-tension lysimeter, 112