
Introduction: What Is Modal Logic?

Strictly speaking, modal logic studies reasoning that involves the use of the
expressions ‘necessarily’ and ‘possibly’. The main idea is to introduce the
symbols ∫ (necessarily) and ∂ (possibly) to a system of logic so that it is
able to distinguish three different modes of assertion:∫A (A is necessary),
A (A is true), and ∂A (A is possible). Introducing these symbols (or
operators) would seem to be essential if logic is to be applied to judging
the accuracy of philosophical reasoning, for the concepts of necessity and
possibility are ubiquitous in philosophical discourse.

However, at the very dawn of the invention of modal logics, it was
recognized that necessity and possibility have kinships with many other
philosophically important expressions. So the term ‘modal logic’ is also
used more broadly to cover a whole family of logics with similar rules and
a rich variety of different operators. To distinguish the narrow sense, some
people use the term ‘alethic logic’ for logics of necessity and possibility.
A list describing some of the better known of these logics follows.

System Symbols Expression Symbolized
Modal logic ∫ It is necessary that

(or Alethic logic) ∂ It is possible that

Tense logic G It will always be the case that
F It will be the case that
H It has always been the case that
P It was the case that

Deontic logic O It is obligatory that
P It is permitted that
F It is forbidden that
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2 Modal Logic for Philosophers

Locative logic Tx It is the case at x that

Doxastic logic Bx x believes that

Epistemic logic Kx x knows that

This book will provide you with an introduction to all these logics, and it
will help sketch out the relationships between the different systems. The
variety found here might be somewhat bewildering, especially for the stu-
dent who expects uniformity in logic. Even within the above subdivisions
of modal logic, there may be many different systems. I hope to convince
you that this variety is a source of strength and flexibility and makes for
an interesting world well worth exploring.
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The System K: A Foundation for Modal Logic

1.1. The Language of Propositional Modal Logic

We will begin our study of modal logic with a basic system called K in
honor of the famous logician Saul Kripke. K serves as the foundation
for a whole family of systems. Each member of the family results from
strengthening K in some way. Each of these logics uses its own symbols
for the expressions it governs. For example, modal (or alethic) logics use
∫ for necessity, tense logics use H for what has always been, and deontic
logics use O for obligation. The rules of K characterize each of these
symbols and many more. Instead of rewriting K rules for each of the
distinct symbols of modal logic, it is better to present K using a generic
operator. Since modal logics are the oldest and best known of those in
the modal family, we will adopt ∫ for this purpose. So ∫ need not mean
necessarily in what follows. It stands proxy for many different operators,
with different meanings. In case the reading does not matter, you may
simply call ∫A ‘box A’.

First we need to explain what a language for propositional modal logic
is. The symbols of the language are ƒ, ç, ∫; the propositional variables:
p, q, r, p′, and so forth; and parentheses. The symbolƒ represents a contra-
diction, ç represents ‘if . . then’, and ∫ is the modal operator. A sentence
of propositional modal logic is defined as follows:

ƒ and any propositional variable is a sentence.
If A is a sentence, then ∫A is a sentence.
If A is a sentence and B is a sentence, then (AçB) is a sentence.
No other symbol string is a sentence.

3

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86367-4 - Modal Logic for Philosophers
James W. Garson
Excerpt
More information

http://www.cambridge.org/0521863678
http://www.cambridge.org
http://www.cambridge.org


4 Modal Logic for Philosophers

In this book, we will use letters ‘A’, ‘B’, ‘C’ for sentences. So A may be
a propositional variable, p, or something more complex like (pçq), or
((pçƒ)çq). To avoid eyestrain, we usually drop the outermost set of
parentheses. So we abbreviate (pçq) to pçq. (As an aside for those who
are concerned about use-mention issues, here are the conventions of this
book. We treat ‘ƒ’, ‘ç’, ‘∫’, and so forth as used to refer to symbols with
similar shapes. It is also understood that ‘∫A’, for example, refers to the
result of concatenating ∫ with the sentence A.)

The reader may be puzzled about why our language does not con-
tain negation: ~ and the other familiar logical connectives: &, √, and ≠.
Although these symbols are not in our language, they may be introduced
as abbreviations by the following definitions:

(Def~) ~A =df Açƒ
(Def&) A&B =df ~(Aç~B)
(Def√) A√B =df ~AçB
(Def≠) A≠B =df (AçB)&(BçA)

Sentences that contain symbols introduced by these definitions are under-
stood as shorthand for sentences written entirely with ç and ƒ. So for
example, ~p abbreviates pçƒ, and we may replace one of these with the
other whenever we like. The same is true of complex sentences. For exam-
ple, ~p&q is understood to be the abbreviation for (pçƒ)&q, which by
(Def&) amounts to~((pçƒ)ç~q). Replacing the two occurrences of~ in
this sentence, we may express the result in the language of K as follows:
((pçƒ)ç(qçƒ))çƒ. Of course, using such primitive notation is very
cumbersome, so we will want to take advantage of the abbreviations as
much as possible. Still, it simplifies much of what goes on in this book to
assume that when the chips are down, all sentences are written with only
the symbols ƒ, ç, and ∫.

EXERCISE 1.1 Convert the following sentences into the primitive notation
of K.

a) ~~p
b) ~p&~q
c) p√(q&r)
d) ~(p√q)
e) ~(p≠q)
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The System K: A Foundation for Modal Logic 5

Our use of ƒ and the definition for negation (Def~) may be unfa-
miliar to you. However, it is not difficult to see why (Def~) works.
Since ƒ indicates a contradiction, ƒ is always false. By the truth table
for material implication, Açƒ is true (T) iff either A is false (F) or ƒ
is T. But, as we said, ƒ cannot be T. Therefore Açƒ is T iff A is F.
So the truth table for Açƒ corresponds exactly to the truth table for
negation.

The notion of an argument is fundamental to logic. In this book, an
argument H / C is composed of a list of sentences H, which are called the
hypotheses, and a sentence C called the conclusion. In the next section,
we will introduce rules of proof for arguments. When argument H / C
is provable (in some system), we write ‘H ÷ C’. Since there are many
different systems in this book, and it may not be clear which system we
have in mind, we subscript the name of the system S (thus: H ÷S C) to
make matters clear. According to these conventions, p, ~qç~p / q is the
argument with hypotheses p and~qç~p and conclusion q. The expression
‘p, ~qç~p ÷K q’ indicates that the argument p, ~qç~p / q has a proof in
the system K.

1.2. Natural Deduction Rules for Propositional Logic: PL

Let us begin the description of K by introducing a system of rules called
PL (for propositional logic). We will use natural deduction rules in this
book because they are especially convenient both for presenting and find-
ing proofs. In general, natural deduction systems are distinguished by
the fact that they allow the introduction of (provisional) assumptions or
hypotheses, along with some mechanism (such as vertical lines or depen-
dency lists) for keeping track of which steps of the proof depend on which
hypotheses. Natural deduction systems typically include the rule Condi-
tional Proof (also known as Conditional Introduction) and Indirect Proof
(also known as Reductio Ad Adsurdum or Negation Introduction). We
assume the reader is already familiar with some natural deduction system
for propositional logic. In this book, we will use vertical lines to keep
track of subproofs. The notation:
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6 Modal Logic for Philosophers

indicates that B has been proven from the hypothesis A. The dots indicate
intervening steps, each of which follows from previous steps by one of the
following five rules. The abbreviations for rule names to be used in proofs
are given in parentheses.

The System PL
Hypothesis

A new hypothesis A may be added to a proof
at any time, as long as A begins a new subproof.

Modus Ponens
This is the familiar rule Modus Ponens.
It is understood that A, AçB, and B must
all lie in exactly the same subproof.

Conditional Proof
When a proof of B is derived from the hypothesis A,
it follows that AçB, where AçB lies outside
hypothesis A.

Double Negation
~~ A The rule allows the removal of double

negations. As with (MP), ~~A and A
A (DN) must lie in the same subproof.

Reiteration
Sentence A may be copied into a new subproof.
(In this case, into the subproof headed by B.)

These five rules comprise a system for propositional logic called PL. The
rules say that if you have proven what appears above the dotted line,
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The System K: A Foundation for Modal Logic 7

then you may write down what appears below the dotted line. Note that
in applying (MP) and (DN), all sentences involved must lie in the same
subproof. Here is a sample proof of the argument pçq, ~q / ~p, to
illustrate how we present proofs in this book.

The proof begins by placing the premises of the argument (namely pçq
and ~q) at the head of the outermost subproof. Then the conclusion (~p)
is derived from these using the five rules of PL. Since there are no rules
concerning the negation sign, it is necessary to use (Def~) to convert all
occurrences of ~ into ç and ƒ as we have done in the third and last steps.
We do not bother writing the name (Hyp) where we used the hypothesis
rule. That the (Hyp) rule is being used is already clear from the presence
of the subproof bracket (the horizontal “diving board” at the head of a
subproof).

Most books use line numbers in the justification of steps of a proof.
Since we only have four rules, the use of line numbers is really not nec-
essary. For example, when (CP) is used, the steps at issue must be the
beginning and end of the preceding subproof; when (DN) is used to pro-
duce A, it is easy to locate the sentence ~~A to which it was applied;
when (MP) is used to produce B, it is easy enough to find the steps A and
AçB to which (MP) was applied. On occasion, we will number steps to
highlight some parts of a proof under discussion, but step numbers will
not be part of the official notation of proofs, and they are not required in
the solutions to proof exercises.

Proofs in PL generally require many uses of Reiteration (Reit). That
is because (MP) cannot be applied to A and AçB unless both of these
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8 Modal Logic for Philosophers

sentences lie in the same subproof. This constant use of (Reit) is annoying,
especially in longer proofs, so we will adopt a convention to leave out the
(Reit) steps where it is clear that an official proof could be constructed
by adding them back in. According to this more relaxed policy, the proof
just given may be abbreviated as follows:

We will say that an argument H / C is provable in PL (in symbols:
H ÷PL C) exactly when it is possible to fill in a subproof headed by mem-
bers of H to obtain C.

It is possible to prove some sentences outside of any subproof. These
sentences are called theorems. Here, for example, is a proof that pç(qçp)
is a theorem.

EXERCISE 1.2 Prove the following in PL.

a) pçq / (qçƒ)ç(pçƒ)
b) pçq, pç(qçƒ) / pçƒ
c) Show (pçq)ç(~qç~p) is a theorem of PL.
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The System K: A Foundation for Modal Logic 9

1.3. Derivable Rules of PL

PL is a complete system for propositional logic. Every valid argument
written in the language of propositional logic has a proof in PL. However,
proofs involving the abbreviations ~, &, √, and ≠ may be very com-
plicated. The task of proof finding is immensely simplified by introduc-
ing derivable rules to govern the behavior of the defined connectives.
(A rule is derivable in a system iff it can be proven in the system.)
It is easy to show that the rule Indirect Proof (IP) is derivable in PL.
Once this is established, we may use (IP) in the future, with the under-
standing that it abbreviates a sequence of steps using the original rules
of PL.

The (IP) rule has been stated at the left, and to the right we have indicated
how the same result can be obtained using only the original rules of PL.
Instead of using (IP) to obtain A, (CP) is used to obtain ~Açƒ. This by
(Def~) is really ~~A, from which we obtain A by (DN). So whenever
we use (IP), the same result can be obtained by the use of these three
steps instead. It follows that adding (IP) to PL cannot change what is
provable.

We may also show derivable a rule (ƒIn) that says that ƒ follows from
a contradictory pair of sentences A, ~A.

Proof of Derivability:

A A
~A ~A
----- -----
ƒ (ƒIn) Açƒ (Def~)

ƒ (MP)
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10 Modal Logic for Philosophers

Once (IP) and (ƒIn) are available, two more variations on the rule of
Indirect Proof may be shown derivable.

EXERCISE 1.3 Show that the following variant of Indirect Proof is also
derivable. (Feel free to appeal to (ƒIn) and (IP), since they were previously
shown derivable.)

With (~Out) available it is easy to show the derivability of a variant of
Double Negation.
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