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Introduction

Geometry is the study of spatial relationships, such as the familiar assertion

from elementary plane Euclidean geometry that, if two triangles have sides

of the same lengths, then they are “congruent.” What does congruent mean

here? One possibility, which is rather abstract and very much in the spirit of

the axiomatic approach usually attributed to Euclid, is to say:

Call two straight line segments “congruent” if they have the same length. Call

two triangles “congruent” if each side of one can be paired with a side of equal

length on the other.

A more concrete way to say this is that one can take the first line segment and

move it “rigidly” from wherever it is in the plane to wherever the second line

segment is, in such a way that it overlies the second exactly; similarly, one can

take the first triangle and move it rigidly so that it overlies the second

exactly.

One of the key insights of modern geometry is that the rigid motions are

precisely those maps from the plane onto itself that preserve lengths of line

segments. The point is that it is just the notion of “length” that counts: all the

angles, the area and other stuff follow once you preserve lengths.

The simplest rigid motion of the plane is reflection in a line: that is, pick

a line and, for every point off the line, draw the perpendicular to the line

through the point and find the point on the other side that is the same distance

from the line; points on the line itself are fixed.

Clearly, following one rigid motion by another results in a rigid motion,

and any rigid motion can be reversed to get back where you started, so,

in the language of modern algebra, the rigid motions form a group under

composition generated by reflections. Historically, the term “symmetry” is

used in place of “rigid motion,” so you will see a large literature on “groups

of symmetries.”

1

www.cambridge.org/9780521863605
www.cambridge.org


Cambridge University Press
978-0-521-86360-5 — Hyperbolic Geometry from a Local Viewpoint
Linda Keen, Nikola Lakic
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

This analysis raises an obvious question:

Is there some other notion of “length” with a corresponding rigid motion

group that is also “natural” and that leads to a geometry that is different from

Euclid’s? What are the analogues of the notions like “polygon”, “area” and

“interior angle” that these motions preserve?

The short answer is yes, and the long answer is the heart of this book.

The geometry we will study in this book is called hyperbolic geometry. It

has the same notion of angle as Euclidean geometry and the rigid motions in

this geometry preserve angles.

To motivate our development of this geometry, we show that, by adding

a single point to the Euclidean plane, we have another kind of symmetry,

“reflection” or “inversion” in a circle: pick any point except the center of the

circle and draw the ray from the center through the point; the reflected point

is that point on the ray whose distance from the center is the square of the

radius of the circle divided by the distance of the given point to the center.

This symmetry preserves angles but not Euclidean length. The image of a

line under an inversion may be a circle and vice versa so that, in a geometry

whose group of motions contains inversions, lines and circles are considered

the same kind of object.

In Chapter 2, we begin with the unit disk together with the group of

motions that take the disk onto itself and preserve angles. Each such motion

is a composition of inversions in circles orthogonal to the boundary of the

disk. We develop a notion of length, or distance, for which this group is the

group of rigid motions. In this geometry, the shortest path between two points

in the disk is along a circle passing through the points and orthogonal to the

unit circle. Points on the unit circle are at infinite distance from points inside

the disk. The disk with this distance function is called the hyperbolic plane

and the distance function is called the hyperbolic metric.

The most natural way to study this geometry is to use the language of

complex numbers and some of the theorems about holomorphic functions –

that is, complex valued functions of a complex variable that have a complex

derivative. For example, a very important theorem from complex analysis,

which we will use over and over again, is called the “generalized Schwarz

lemma”. It says that any holomorphic map of the disk into itself that is not a

rigid motion decreases hyperbolic distance.

We will also be interested in studying geometries for domains that are open

subsets of the Euclidean plane. One natural geometry is obtained by restricting

the usual Euclidean notion of length. This geometry, however, doesn’t really

capture some of the intrinsic properties of the domain. For example, rigid

motions of the plane do not necessarily map the domain to itself; points on
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Introduction 3

the boundary of the domain will be a finite distance from interior points. These

domains do admit other geometries, and in particular a hyperbolic geometry.

The idea behind this book is to study a set of related geometries we can put

on plane domains that are defined in terms of the derivatives of their distance

functions called densities. These are more general than the metrics in that

they enable us to measure the lengths of paths, the areas of triangles etc.

Moreover, the metric may be recovered from the density by integrating over

paths. These densities we consider are called “conformal densities” because

they have the property that angle measurement is the same for all of the

geometries they define.

To begin our discussion on conformal densities for arbitrary plane domains,

we need standard tools from complex variable theory and topology. We

develop these tools in Chapters 3, 4. We state all of the standard results

we need, but we prove only those that are most important or whose proofs

involve relevant techniques.

In Chapters 5 and 6 we investigate the symmetry groups of the Euclidean

and hyperbolic planes in detail. We show how to use topology to identify

plane domains with subgroups of rigid motions. Then in Chapter 7 we define

the density that determines the hyperbolic geometry of an arbitrary domain

and in Chapters 8, 9 and 10 we define generalizations of this density.

The contents of the first seven chapters of this book are, for the most

part, part of the standard mathematical lore. Our approach to defining the

hyperbolic metric for an arbitrary plane domain, however, lends itself to

generalization and in Chapters 8, 9 and 10 we present this generalization.

Some of this material has not appeared before, or has only appeared recently.

In Chapters 11, 12 and 13, we turn to applications. We look at iterated

function systems from a given plane domain to a subdomain. The characteris-

tics of the limiting behavior of these systems are controlled by the geometry

of the domain and subdomain. This material is the subject of ongoing research

and contains both previously unpublished results and open problems.

In general it is a very difficult problem to find an explicit formula for

the hyperbolic metric of an arbitrary domain. It is possible, however, to get

estimates on the metric by using inclusion mappings. We address this problem

in Chapters 14 and 15. In Chapter 14, we get estimates on the hyperbolic

metric for various domains by applying the generalized Schwarz lemma to

the inclusion map of the domain into the twice punctured plane. We also

present an equivalent characterization of the hyperbolic metric which gives

another method of finding estimates for the metric. Finally, in Chapter 15

we obtain estimates on the hyperbolic metric for domains called uniformly

perfect. In general, one can get estimates using inclusion mappings from the
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4 Introduction

disk into the domain but they only work in one direction. The densities of

uniformly perfect domains are comparable to the reciprocal of the distance

to the boundary and for these we get estimates in both directions. The last

chapter is an appendix in which we present a brief survey of elliptic functions.

The exercises throughout the book should be considered as an integral part

of the text material because they contain the statements of many things that

are used in the text. In the later chapters they also contain open problems.

We envision this book to be used in several different ways. The first author

has used Chapters 1, 4 and 5 as the basis of a junior level undergraduate

course. The authors have used the first seven chapters as a one semester

second year graduate course. They are currently using the remaining chapters

for the second semester of a second year graduate course designed to introduce

graduate students to potential research problems.

This book grew out of a seminar for graduate students at the Graduate

Center of the City University of New York. While we were writing this book,

many of the students read and lectured on the material and gave us invaluable

feedback. We would like to thank all the participants in the seminar for all

their input. The members of the seminar are Orlando Alonso, Anthony Conte,

Ross Flek, Frederick Gardiner, Sandra Hayes, Jun Hu, Yunping Jiang, Greg

Markowsky, Bill Quattromani, Kourosh Tavakoli, Donald Taylor, Shenglan

Yuan and Zhe Wang. We would also like to thank Ross Flek for making

most of the figures in the book and Fred Gardiner for his encouragement. The

book would also never have come to being without the strong support of our

families, Jonathan Brezin and Ljiljana and Emily Lakic.
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1

Elementary transformations of the Euclidean

plane and the Riemann sphere

1.1 The Euclidean metric

In most of this book we will be interested in the hyperbolic metric and its

generalizations. The hyperbolic metric has its own inner beauty, but it also

serves as an important tool in the study of many different areas of mathematics

and other sciences.

Before we start exploring hyperbolic geometry in Chapter 2, we get some

orientation from the geometry that everyone is very familiar with, Euclidean

geometry. We denote the plane by R
2 or C and a point in the plane either by its

Cartesian coordinates, �x� y�, by its polar coordinates �r� 	� or by the complex

number z= x+ iy= rei	, depending on which is most convenient. We denote

the modulus �z� by r and the argument arg z by 	 where �z� = r =
√

x2+y2

and arg z= 	 = arctan �y/x�. It is also convenient sometimes to think of the

point z as the vector from the origin to z.

The argument 	 is the angle measured from the positive x-axis to the vector

z. The plane has an orientation: the argument is positive if the direction from

the x-axis to z is counterclockwise and negative otherwise.

The complex conjugate of z is z̄= x− iy; it has the same modulus as z and

its argument has the opposite sign.

The Euclidean length of the vector z is its modulus and the distance

between points z1 = x1+ iy1 and z2 = x2+ iy2 in the plane is the modulus of

their difference,

d�z1� z2�= �z2− z1� =
√

�x2−x1�
2+ �y2−y1�

2


This definition of distance satisfies the three requisite conditions for a

distance function:

• d�z1� z2�≥ 0 with equality if and only if z1 = z2;
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6 Elementary transformations

• d�z1� z2�= d�z2� z1�;

• d�z1� z3�≤ d�z1� z2�+d�z2� z3�.

Any space X, together with a distance function dX satisfying these proper-

ties, is called a metric space.

Definition 1.1 A finite curve in a metric space is a continuous map of the

unit interval �0�1� into a metric space; an infinite curve is a continuous

map of the real line �−���� into a metric space; a semi-infinite curve is a

continuous map of the half line �0��� into a metric space. The word curve

denotes any one of these.

We can use the third condition for the distance function to characterize

straight lines in Euclidean geometry.

Definition 1.2 We say a curve is a straight line or geodesic in the Euclidean

plane if for every triple of points z1� z3� z2 on the curve with z3 between z1
and z2 we have

d�z1� z2�= d�z1� z3�+d�z3� z2�


If the curve satisfying this condition is finite we call it a straight line segment

or geodesic segment; if it is a semi-infinite curve satisfying the condition it is

called a ray or geodesic ray and if it is infinite it is called an infinite geodesic

or an extended line.

For readability, when it is clear what kind of straight line or geodesic we

mean we simply call it a line or geodesic.

Exercise 1.1 Verify that the function d�z1� z2� is a distance function on C

and also on any subdomain ⊂ C.

Exercise 1.2 Let z1 = 1 and z2 = i. Evaluate the distance from z1 to z2 and

find the formula for the geodesic segment joining z1 and z2.

Exercise 1.3 Show that, for any point z and any extended line l, there is a

unique point w on l closest to z. The point w is called the projection from z

onto l.

1.2 Rigid motions

The Euclidean geometry of the plane is defined by the following maps of the

plane onto itself.
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1.2 Rigid motions 7

Definition 1.3 A rigid motion of the plane is a one to one map f of the plane

onto itself such that, for any two points z1� z2,

�f�z1�−f�z2�� = �z1− z2�


A rigid motion is also called an isometry.

Compositions of rigid motions are again rigid motions and, since they are

one to one and onto, they are invertible. We can therefore talk about the

group of rigid motions of the plane.

The reflections in the x- and y-axes respectively are rigid motions given

by the maps Rx � z �→ z̄ and Ry � z �→ −z̄ respectively. More generally, let l

be any line in the plane C. For any point z ∈ C, there is a point w on l closest

to z, the projection from z to l (see Exercise 1.3). Define the reflection Rl to

be the map that sends a point z to the point Rl�z� on the line through z and w

on the opposite side of l such that d�z�w�= d�Rl�z��w�. Note that Rl sends

a point on l to itself. Clearly a reflection is its own inverse; that is RlRl is

the identity map Id. Any transformation that is its own inverse is called an

involution.

Two other types of rigid motions are translations given by maps of

the form Tz0
� z �→ z0 + z and rotations given by maps of the form Rz0��

�

z �→ z0+ �z− z0�e
i�.

We state the properties of rigid motions as Exercises 1.4 to 1.12.

Exercise 1.4 If l1 and l2 are lines in C such that the angle from l1 to l2 is

�, then the angle from Rx�l1� to Rx�l2� is −� and similarly for the images

under Ry. In other words, these reflections reverse orientation.

Exercise 1.5 Prove the proposition: A rigid motion is uniquely determined

by what it does to three points that do not lie in the same line. Hint: First

prove that, if a rigid motion fixes two points, it fixes every point on the line

joining them.

Exercise 1.6 Prove the proposition: If l and m are two lines in the plane

and Rl and Rm are reflections in these lines then the composition RmRl is

a rotation or a translation depending on whether the lines intersect or are

parallel.

Exercise 1.7 Prove the proposition: If l and m are two lines in the plane and

Rl and Rm are reflections in these lines then the composition RmRlRm is a

reflection about the line l′ = Rm�l�.

Exercise 1.8 Prove the proposition: Translations preserve orientation.
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8 Elementary transformations

Exercise 1.9 Prove the proposition: Rotations preserve orientation.

Exercise 1.10 Prove the proposition: Reflections reverse orientation. Hint:

Show that every reflection can be written as a conjugation of the reflection

Rx by a translation and rotation.

Exercise 1.11 Prove the proposition: If a rigid motion has a single fixed

point it is a rotation; if it fixes two points, but does not fix every point, it is

a reflection; if it has no fixed points it is either a translation or a translation

followed by a reflection.

Definition 1.4 A rigid motion that is a translation followed by a reflection

is called a glide reflection. If the reflection is in a line perpendicular to

the vector of translation, the motion reduces to a reflection and the glide

reflection is trivial.

Exercise 1.12 Prove the proposition: Every rigid motion can be written as

the composition of at most three reflections. The only rigid motion that cannot

be written as a composition of fewer than three reflections is a non-trivial

glide reflection. Hint: Write the motion as a composition of reflections and

use the fact that reflections about any line are involutions.

Exercise 1.13 Prove the proposition: The group of translations and rotations

constitute the full group of orientation preserving rigid motions of the plane.

1.2.1 Scaling maps

In the previous part of this section we looked at the rigid maps of the plane.

These maps preserve sizes and shapes. Another map that preserves shapes

but changes sizes is the scaling map; that is, contraction or stretching by the

same amount in every direction. This map is described by the formula

Sc�z�= cz� c��= 0� ∈ C


The inverse of the scaling map is clearly S1/c. Note that the scaling map

preserves orientation.

The scaling map can be composed with any rigid motion and the result is

also a map that preserves shapes. Such a map is called a similarity and the set

of such maps forms the group of similarities that contains the rigid motions

as a subgroup. The subgroup of the similarities that contains all maps of the

form z0+cz, where z0� c��= 0�∈C, is called the group of complex affine maps

or more simply the group of affine maps.
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1.3 Conformal mappings 9

Exercise 1.14 Show that the similarities take straight lines to straight lines

and preserve or reverse the angles between lines.

Exercise 1.15 Show that the affine maps are precisely the subgroup of ori-

entation preserving similarites.

Exercise 1.16 Let g�z�= 1+6z be an affine map. What is the image of the

unit disk under this map?

1.3 Conformal mappings

Complex affine maps are not the only orientation preserving maps of the

plane that preserve angles. Since lines are not necessarily mapped to lines,

we need to define what we mean by preservation of angles.

Definition 1.5 A plane domain is an open connected subset of the complex

plane C.

Definition 1.6 If two differentiable curves �1 and �2 in the domain  inter-

sect at the point z0, the angle between them is defined as the angle measured

from the tangent to �1 to the tangent to �2.

We then define

Definition 1.7 A differentiable map f from a plane domain in C to another

plane domain X is called conformal at p∈ if, for every pair of differentiable

curves �1 and �2 intersecting at p, the angle between �1 and �2 is equal to the

the angle between the curves f��1� and f��2� at f�p�. If the angle between

the curves f��1� and f��2� at f�p� is the negative of the angle between �1

and �2 then f is called anti-conformal at p.

In this chapter we will work with a special class of maps.

Definition 1.8 An invertible map f from a plane domain in C onto another

plane domain X is called a homeomorphism if both f and its inverse f−1 are

continuous.

Definition 1.9 A homeomorphism f from a plane domain  in C onto an-

other plane domain X is called a diffeomorphism if both f and its inverse

f−1 are differentiable.
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10 Elementary transformations

Definition 1.10 A diffeomorphism f from a plane domain  in C to another

plane domain X is called conformal (or a conformal homeomorphism) if it

is conformal at every p ∈. It is called anti-conformal if it is anti-conformal

at every p ∈.

To find a formula to check whether a map is conformal or anti-conformal

we need to use coordinates. We will get formulas in both Cartesian and

complex coordinates.

Using Cartesian coordinates we denote the points in  by �x� y� and points

in X by �u� v� and write f�x� y�= �u�x� y�� v�x� y��.

It is an exercise from calculus that, if all the directional derivatives at a

point have the same magnitude, the map preserves the magnitudes of the

angles at that point; that is, the map on tangent vectors is a scaling map. In

particular, if we write f�x� y�= u�x� y�+ iv�x� y�, and use the notation fx� fy,

ux� uy and vx� vy for partial derivatives, this means that

fx = ux+ ivx =−ify =−iuy+vy


Equating real and imaginary parts we get

ux = vy and uy =−vx


These equations are called the Cauchy–Riemann equations and they are sat-

isfied whenever the map is conformal.

Since we require that f be invertible and orientation preserving, the

Jacobian J�f�= uxvy −vxuy > 0. If the orientation is reversed J�f� < 0. The

condition for anti-conformality is then given by fx = ify and we get equations

ux =−vy and uy = vx


If we use differentials, the tangents at �x� y� are given by �dx�dy� and the

tangents at �u�x� y�� v�x� y�� are given by �du�dv� and we have

du= uxdx+uydy and dv= vxdx+vydy


The differential of the map f is

df = fxdx+fydy


There is another formal notation that makes these computations neater. Set

z= x+ iy, z̄= x− iy, dz= dx+ idy, dz̄= dx− idy and f�z�= f�x� y�. Then

write

fz�z�=
1

2
�fx�z�− ify�z�� and

fz̄�z�=
1

2
�fx�z�+ ify�z��
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