Author Index

Aitkin, M., 40, 84, 99
Albert, J. H., 113
Algina, J., 208
Anastasi, A., 105
Andersen, E. B., 27, 120
Angoff, W. H., 207
Baker, E. L., 144
Berstrom, B. A., 190
Birnbaum, A., 26, 77, 134, 239
Bock, R. D., 7, 32, 40, 64, 65, 78, 80, 84, 99, 112, 120, 183, 194, 242
Boulet, J. R., 145, 211
Bradlow, E. T., 8, 113, 116, 118, 121, 123, 128, 131, 137, 140, 145, 149, 190, 207, 235
Brennan, R. L., 208
Breslow, N. E., 231
Brown, W., 18, 75
Carlin, J. B., 234, 238
Carr, A., 50
Chang, H.-H., 91
Chib, S., 113, 242
Clauser, B. E., 221
Cohen, J., 208
Congdon, P., 237
Cook, L. L., 47
Coughlan, A. T., 20
Cronbach, L. J., 19
Crumm, W. L., 75
Dempster, A. P., 112, 198, 242
Donohue, J. R., 221
Dorans, N. J., 47, 78, 96
Douglas, G. A., 27
Du, Z., 137, 140
Duhachek, A., 20
Dunbar, S. B., 144
Earles, J. A., 9
Efron, B., 98, 122
Eignor, D. R., 47
Embretson, S. E., 183
Ferguson, T. S., 237
Fisher, R. A., 210
Folske, J. C., 110
Gelfand, A. E., 112, 235
Gelman, A., 112, 123, 125, 126, 127, 137, 155, 216, 234, 238, 243, 244
Gessaroli, M. E., 110
Geyer, C. J., 126
Ghosh, B. K., 209
Gibbons, R. D., 65, 111, 112, 130
Gilks, W., 127, 234, 243
Green, B. F., 51, 76
Greenberg, E., 242
Greenland, S., 231
Guilford, J. P., 75
Gulliksen, H. O., 7, 73
Gustafsson, J.-E., 39, 121
Haenszel, W., 220
Hambleton, R. K., 50, 208, 221
Hanson, B. A., 208
Hastings, R., 112
Hedeker, D. R., 111, 130
Holland, P. W., 25, 27, 78, 81, 83, 154, 220, 221, 229, 231
Holzinger, K. J., 75, 111
Humphreys, L. G., 79
Huynh, H., 208
Iacobucci, D., 20
Jöreskog, K. G., 111
Kelley, T. L., 20, 75
Kendall, M. G., 80
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page Range(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiely, G. L.</td>
<td>75, 106</td>
</tr>
<tr>
<td>Kingsbury, G. G.</td>
<td>46</td>
</tr>
<tr>
<td>Kingston, N. M.</td>
<td>47, 62</td>
</tr>
<tr>
<td>Kolakowski, R.</td>
<td>7, 183</td>
</tr>
<tr>
<td>Kolen, M. J.</td>
<td>208</td>
</tr>
<tr>
<td>Laird, N. M.</td>
<td>112, 198, 242</td>
</tr>
<tr>
<td>Lee, W.-C.</td>
<td>208, 210</td>
</tr>
<tr>
<td>Levine, M.</td>
<td>40</td>
</tr>
<tr>
<td>Lewis, C.</td>
<td>67, 74, 75, 80, 208</td>
</tr>
<tr>
<td>Lichten, W.</td>
<td>9</td>
</tr>
<tr>
<td>Linn, R. E.</td>
<td>144</td>
</tr>
<tr>
<td>Little, R. J. A.</td>
<td>39, 188, 189, 193, 197, 198</td>
</tr>
<tr>
<td>Livingston, S. A.</td>
<td>208</td>
</tr>
<tr>
<td>Locevinger, J.</td>
<td>24</td>
</tr>
<tr>
<td>Lord, P. M.</td>
<td>7, 15, 18, 21, 26, 27, 30, 44, 46, 76, 77, 223</td>
</tr>
<tr>
<td>Lukhele, R.</td>
<td>7, 144</td>
</tr>
<tr>
<td>Lunz, M. E.</td>
<td>190</td>
</tr>
<tr>
<td>MacNicol, K.</td>
<td>50</td>
</tr>
<tr>
<td>Mantel, N.</td>
<td>220</td>
</tr>
<tr>
<td>Mazor, K. M.</td>
<td>221</td>
</tr>
<tr>
<td>Mazzeeo, J.</td>
<td>91</td>
</tr>
<tr>
<td>McBride, J. R.</td>
<td>53</td>
</tr>
<tr>
<td>McDonald, R. P.</td>
<td>24, 111</td>
</tr>
<tr>
<td>Merrill, P. F.</td>
<td>50</td>
</tr>
<tr>
<td>Messick, S.</td>
<td>15</td>
</tr>
<tr>
<td>Metropolis, N.</td>
<td>112</td>
</tr>
<tr>
<td>Mislevey, R. J.</td>
<td>31, 32, 40, 41, 194, 242</td>
</tr>
<tr>
<td>Mollenkopf, W. G.</td>
<td>50</td>
</tr>
<tr>
<td>Monk, J. J.</td>
<td>50</td>
</tr>
<tr>
<td>Mooney, J. A.</td>
<td>34, 64, 74, 75, 77</td>
</tr>
<tr>
<td>Morgan, A.</td>
<td>39, 121</td>
</tr>
<tr>
<td>Morris, C. N.</td>
<td>98, 122, 237</td>
</tr>
<tr>
<td>Muraki, E.</td>
<td>65, 112</td>
</tr>
<tr>
<td>Neyman, J.</td>
<td>81</td>
</tr>
<tr>
<td>Novick, M. R.</td>
<td>7, 15, 18, 21, 26, 30, 44, 76, 77, 208</td>
</tr>
<tr>
<td>Pearson, E. S.</td>
<td>81</td>
</tr>
<tr>
<td>Phillips, A.</td>
<td>231</td>
</tr>
<tr>
<td>Ramsay, J. O.</td>
<td>216</td>
</tr>
<tr>
<td>Rasch, G.</td>
<td>26, 27, 239</td>
</tr>
<tr>
<td>Reckase, M. D.</td>
<td>24</td>
</tr>
<tr>
<td>Ree, M. J.</td>
<td>9</td>
</tr>
<tr>
<td>Richardson, S.</td>
<td>234</td>
</tr>
<tr>
<td>Roberts, G.</td>
<td>127, 243</td>
</tr>
<tr>
<td>Robins, J.</td>
<td>231</td>
</tr>
<tr>
<td>Rogers, H. J.</td>
<td>78, 221</td>
</tr>
<tr>
<td>Rosenbaum, P. R.</td>
<td>34, 64</td>
</tr>
<tr>
<td>Rowley, G. L.</td>
<td>76</td>
</tr>
<tr>
<td>Rubin, D. B.</td>
<td>39, 112, 126, 137, 188, 189, 193, 197, 198, 234, 238, 242, 244</td>
</tr>
<tr>
<td>Samejima, F.</td>
<td>64, 82, 114, 146, 156, 211</td>
</tr>
<tr>
<td>Sands, W. A.</td>
<td>53</td>
</tr>
<tr>
<td>Sax, G.</td>
<td>50</td>
</tr>
<tr>
<td>Segall, D. O.</td>
<td>24</td>
</tr>
<tr>
<td>Shealy, R.</td>
<td>78</td>
</tr>
<tr>
<td>Sheehan, K.</td>
<td>80</td>
</tr>
<tr>
<td>Silverman, B. W.</td>
<td>216</td>
</tr>
<tr>
<td>Sinharay, S.</td>
<td>126, 244</td>
</tr>
<tr>
<td>Sirici, S. G.</td>
<td>74, 75, 79, 82, 144</td>
</tr>
<tr>
<td>Smith, A. F. M.</td>
<td>112, 124, 235</td>
</tr>
<tr>
<td>Sörbom, D.</td>
<td>111</td>
</tr>
<tr>
<td>Spearman, C.</td>
<td>18</td>
</tr>
<tr>
<td>Spiegelhalter, D. J.</td>
<td>234</td>
</tr>
<tr>
<td>Stallings, W. M.</td>
<td>50</td>
</tr>
<tr>
<td>Stanley, J. C.</td>
<td>87</td>
</tr>
<tr>
<td>Stein, C.</td>
<td>21</td>
</tr>
<tr>
<td>Steinberg, L.</td>
<td>34, 35, 64, 74, 75, 77, 81, 223</td>
</tr>
<tr>
<td>Stern, H. S.</td>
<td>234, 238</td>
</tr>
<tr>
<td>Stocking, M. L.</td>
<td>41</td>
</tr>
<tr>
<td>Stolr, N. F.</td>
<td>78, 130</td>
</tr>
<tr>
<td>Stuart, A.</td>
<td>80</td>
</tr>
<tr>
<td>Subkoviak, M.</td>
<td>208</td>
</tr>
<tr>
<td>Swaminathan, H.</td>
<td>78, 208, 221</td>
</tr>
<tr>
<td>Swineford, F.</td>
<td>111</td>
</tr>
<tr>
<td>Tanner, M. A.</td>
<td>112</td>
</tr>
<tr>
<td>Thayer, D. T.</td>
<td>78, 83, 220, 221</td>
</tr>
<tr>
<td>Thissen, D.</td>
<td>5, 7, 34, 35, 64, 74, 75, 77, 78, 79, 81, 82, 106, 144, 190, 194, 223</td>
</tr>
<tr>
<td>Thomas, N.</td>
<td>190</td>
</tr>
<tr>
<td>Thomson, G. H.</td>
<td>75</td>
</tr>
<tr>
<td>Thordikke, R. L.</td>
<td>75</td>
</tr>
<tr>
<td>Thurstone, L. L.</td>
<td>110</td>
</tr>
<tr>
<td>Towlie, N. J.</td>
<td>50</td>
</tr>
<tr>
<td>Traub, R. E.</td>
<td>76</td>
</tr>
<tr>
<td>Ulan, S.</td>
<td>112</td>
</tr>
<tr>
<td>Wald, A.</td>
<td>209</td>
</tr>
<tr>
<td>Wang, M. D.</td>
<td>87</td>
</tr>
<tr>
<td>Wang, X.</td>
<td>113, 116, 118, 123, 128, 131, 137, 140, 144, 145, 149, 154, 190, 207, 216, 220, 223, 225, 235</td>
</tr>
<tr>
<td>Waters, B. K.</td>
<td>53</td>
</tr>
<tr>
<td>Weiss, D. J.</td>
<td>46</td>
</tr>
<tr>
<td>Wong, V. H.</td>
<td>112</td>
</tr>
<tr>
<td>Wright, B. D.</td>
<td>27, 190</td>
</tr>
<tr>
<td>Yen, W. M.</td>
<td>73, 106</td>
</tr>
<tr>
<td>Zenisky, A. L.</td>
<td>144</td>
</tr>
<tr>
<td>Zhang, J.</td>
<td>130</td>
</tr>
<tr>
<td>Zwick, R.</td>
<td>83</td>
</tr>
</tbody>
</table>
Subject Index

1-PL (one-parameter logistic) testlet model, 28, 29, 189, 190, 240
and item characteristic curves (ICCs), 28
2-PL testlet model, 30, 119, 126, 190, 197, 222, 239, 240
2-PL Bayesian item response theory (IRT) model parameters, 118, 125
computational feature of, 137
dichotomous form of, 123
ICCs of, 135
prior distributions of, 161
testlet response theory (TRT) model, 120, 160
TRT likelihood approach, 123
3-PL testlet model, 30, 31, 36, 39, 40, 114, 115, 135, 142, 189, 190, 239, 240
2-PL testlet model as special case of, 135
3-PL Bayesian testlet model, 134
analogous version of, 136
and 3-PL TRT model, 222
and binary items, 145
for binary items, 156
item characteristic curves (ICCs) of, 135
Metropolis-Hastings algorithm, 137
testlet variance for, 139
weak identifiability of, 155

algebra testlet, 68
algorithm for, 107
effects of context in, 106
ALL DIFFerential item functioning (DIF) model, 92, 93
Appreciation of Life testlet, 176
Armed Services Vocational Aptitude Battery (ASVAB), 11, 53
Computerized Adaptive Test version of (CAT-ASVAB), 11, 53, 63
and traditional item response theory (IRT), 53

asymptotic standard errors/theory, 122, 124, 142, 191, 231, 234
Bayes factors, 237
Bayes modal estimation, 32, 34, 35, 36, 38, 40
empirical methods of, 122
Bayes theorem, 161
application of, 191
Bayesian 2-PL testlet model, 127, 138
and absolute error prediction, 129
and coverage probabilities, 129
and Markov chain Monte Carlo (MCMC) methods, 130
efficacy of, 127
item characteristic curve (ICC), 134
limitations of, 130
parameters in, 126
simulation design within
testlet response theory (TRT) model, 138
MML estimation approaches in, 120
Bayesian 3-PL testlet model
and application on Graduate Record Exam (GRE), 140
and its use in mixed data, 146
computation aspect of
Markov chain Monte Carlo (MCMC) method, 137
parameters with true values for, 139
Scholastic Assessment Test (SAT), 140
simulation design for, 137, 138
Bayesian estimation, 123, 166, 191, 192, 236.
See also Bayes modal estimation
and mean squared errors, 199
ignorable missing pattern in, 193
Markov chain Monte Carlo method, 123
posterior distribution in, 193
underlying aspects of, 235
Bayesian framework, 113, 115, 119, 169, 184
uses of, 161
Subject Index

Bayesian hierarchical specification, 119, 222, 238
Bayesian item response theory (IRT) model, 236, 241, 242, 243, 245 computation for, 241
convergence issues for, 244 uses of, 244
Bayesian mixed testlet model, 151. See also Bayesian 2-PL testlet model; 3-PL testlet model and testlet design variables, 148 application of, 147, 148 parameters from, 149 simulation design for, 148 simulation results for, 148
Bayesian testlet model, 98, 145
covariate augmented analysis result in, 162 inferential goal in, 241 limitation of, 155 parameters in, 155 specification of, 136
Bayesian testlet response theory (TRT) model, 105, 119, 219, 223, 226
covariates insertion/utilization in, 155 extended version of, 155
Bayesian theorem, 113, 121, 207 advantage of, 198 consequence of, 113 Bernoulli likelihood approach, 121, 189 beta-binomial test scoring models, 208 bi-factor model, 110, 111, 112
goal of, 110
BILOG software/computer program, 32, 129, 137, 194, 226 binary 3-PL testlet model, 147
binary/polytomous data
Bayesian testlet model for, 144, 145
psychometric scoring model for, 144
Bock’s model, 64, 82
testlet factor analysis in, 64 latent proficiency in, 64 breast cancer patients, survey of, 169 and testlet response theory, 183 Bayesian analysis in, 178, 181
Bayesian framework, 173
covariates associated with, 176 demographic/background questions in, 171
drug intake (Tamoxifen), 172 included survey items, 171
item response theory (IRT) model, 173, 181
local dependence effect of, 181
post-MCMC regression analyses, 177 probability curves, 173. See tracelines regression analysis in, 177
stem-and-leaf diagram, 176
test-scoring model in, 173
classification consistency, test scores, 207 and use of Rasch model, 208 assessment of, 208 psychometric scoring model for, 208
Clinical Skills Assessment (CSA)
Integrated Clinical Encounter (ICE) score of, 211
Cohen’s coefficient (k), 208
computerized adaptive test (CAT), 10, 44, 46, 47, 107, 190
Ad Hoc testlet construction, 107
and context effects, 51
and instructional diagnosis, 10 and true score theory, 10
item selection algorithm, 51, 52
reading comprehension items, 63
scoring models in, 10 standard error of estimates in, 52
testing algorithm for, 10 conditional maximum likelihood (CML), 27, 39
construct validity concept, 15 context effect, 47, 48 definition of, 47
Cronbach’s coefficient (α), 18
Cronbach’s statistic, 19, 20
cumulative density function (CDF), 115
data augmentation approaches, 124, 137
DIFFerential item functioning (DIF) analysis/study, 79, 219
and Mantel-Haenszel (MH) statistics, 87 and simulations interpretation, 231 and true score curves, 87, 95 approach for, 220
DIFFerential item functioning (cont.)
Bayesian approach for, 219, 221, 224, 231
detection of, 87
testlet response theory based, 221
Holland’s Rule for, 225
practical procedure for, 225 results of, 225
testlet response theory (TRT) model in characteristics of, 222
use of Mantel-Haenszel (MH) statistics in, 220
differential test functioning (DTF), 154
Educational Testing Service (ETS), 11, 61
empirical Bayes methods, 98, 99, 122
error variance, 16, 21
examinee’s proficiency estimation of, 37, 38
Fisher information function/matrix, 37, 122
Gaussian error distribution, 22, 122, 216, 219
Subject Index

parameters drawn from, 139
Gibbs sampling, 234
Graduate Management Aptitude Test (GMAT), 46
Graduate Record Exam (GRE), 46, 137
verbal section of (GRE-V), 141
non-testlet based methods for, 141
parameter estimates for, 141
structure of, 140
testlet-based methods for, 141
Hebrew exam, 9
Hessian matrix calculations, 234
Holland's Rule, 225
instructional diagnosis, 10
Integrated Clinical Encounter (ICE) score, 211
item characteristic curves (ICCs), 28, 29, 134
item difficulty parameter (b), 159, 221
covariates of, 162
kernel density estimate of, 163
item discrimination parameter (a), 159, 189, 194
covariates of, 162
kernel density estimate of, 163
item response functions (IRFs), 28, 78
item response theory (IRT), 10, 22, 24, 49, 53, 57, 70
and index of reliability, 77
development of, 105
key feature of, 105
models supporting IRT theory, 27, 30, 70, 83, 118, 126, 135, 189, 197, 210, 211, 221, 235
3-PL testlet model as, 31
characteristics of, 72
conditional independence of, 34
conditional maximum likelihood (CML), 27
dichotomous form of, 81, 90
joint maximum likelihood (JML), 27
likelihood-based, 234
parameters for, 27, 192, 239
parametric form of, 234
polynomial form of, 80, 84, 100, 107, 211
probability-in-the-soul idea of, 26
Rasch model as, 24
statistics of, 74
unconditional maximum likelihood (UML), 27
use of Bayesian framework, 211
use of MCMC methods, 124
item response theory (IRT) model, 182
item vs. question, 5
joint maximum likelihood (JML), 27, 39, 120
judge-to-judge, score variance, 8
kernel density estimation, 164, 165, 166, 167, 168
results of, 196
Law School Admissions Test (LSAT), 73, 74, 79, 85, 88, 97, 98
forms of, 80
parallel forms of, 84
sections in, 73
statistical characteristics of, 98
structure of, 74
subgroups on, 84
testlet structure of, 86
logistic model, 30
Mantel-Haenszel (MH) statistics, 87, 88, 219
marginal reliability, test scoring, 77
Markov chain Monte Carlo method, 112, 113, 123, 211, 235, 241
maximum a posteriori (MAP) estimation, 123
maximum likelihood estimation, 32, 34, 191, 192, 194, 198, 236
error variance of, 37
goal of, 192
programs for, 32
standard errors for estimates by, 124
maximum marginal likelihood method (MML), 27, 39, 40, 84, 99, 120
estimation of, 40
MCMC methods, 123. See Markov chain Monte Carlo method
absolute errors for, 129
efficacy of, 148
Metropolis-Hastings algorithm, 124, 126, 127, 137, 147, 242, 243
Missing At Random (MAR), 188
definition of, 190
description of, 188
missing data set and SCORIGHT analysis, 197, 199, 200.
See also SCORIGHT software/computer program
missingness indicator (M), test data set
distribution of, 188, 189
MML estimation/method, 27, 39, 40, 84, 99, 120, 122. See also maximum marginal likelihood method
asymptotic standard errors/theory in, 120, 122
second stage of, 121
MULTILOG software, 32, 194
multivariate normal random variable, 156
Index

Subject Index

National Council of Architectural Registration Boards (NCARB), 61, 63
decision making in, 70
National Merit Scholars
screening for, 6
Newton-Raphson technique, 36, 121, 123
Neyman-Pearson lemma
test by, 81
NO DIF model, 92, 93. See also Differential item functioning
no testlet effect, 128, 129, 134, 138
Nobel Prize winners
algorithm used to choose, 6
North Carolina Test of Computer Skills, 148, 150
Bayesian mixed testlet model to
application of, 150
results from, 150
performance sections of, 151
Not Missing At Random (NMAR), 188, 189, 190
options word count, covariate, 158, 159, 163
ordinal response model, 114
passing scores
description of, 207
posterior distribution evaluation of, 207
polytomous IRT model, 72
graphical description of, 146
parameter for, 157
Posterior Probability of Passing (PPoP) curve, 209
and application to Clinical Skills Assessment, 209
and maximum likelihood theory, 209
Bayesian approach to construct, 216
construction of, 213
determination of, 210
idea behind, 209
Integrated Clinical Encounter (ICE) score from, 212
parallelism in, 215
posterior standard deviation, 197
kernel density estimation for, 197
probability-in-the-soul approach, 25, 26, 27
psychometric scoring model, 57, 144
Rasch model, 83, 107
reliability coefficient, 21
reliability, test scoring, 18, 20
and error of estimation, 77
calculation of, 76
definition of, 76, 77
Rosenbaum’s theorem, 54
Scholastic Assessment Test (SAT), 136, 140
summary results from, 9
verbal section of (SAT-V), 140, 142
non-testlet based methods for, 141
structure of, 141
testlet-based methods for, 141
score variance, 8, 16
SCORIGHT software/computer program, 116, 123, 127, 131, 150, 161, 211, 221, 223, 235, 241
and missingness patterns, 193
MCMC methods in, 149
use of Bayesian theorem in, 194
Simulation Studies, Differential item functioning (DIF) detection, 228
Spearman-Brown Formula, 18, 75, 87
split-half reliability, 75. See also reliability, test scoring
Standards for Educational and Psychological Tests, 75
stem word count, covariate, 158, 159, 163
stem-and-leaf diagram, 176
test data set
and data matrix for examinee’s response, 186
and missingness indicator (M), 187
and SCORIGHT analysis, 187, 195, 197
fractional design in, 189
Missing At Random (MAR) in, 187
Missing Completely At Random (MCAR) in, 187
missingness patterns of, 187, 188, 189
model for, 199
Not Missing At Random (NMAR) in, 188
test scores/scoring, 14
accuracy measurement, 14
and reliability, 15
Bayesian methods, 216
coherent psychometric scoring model, 106
conditional reliability of, 208
educational system efficacy and, 7
error variance in, 76
finesse in, 6
models for, 186
multiple choice item for, 7
split-half reliability, 21
statistical models for, 15
testing, 3
allocation of points in, 5
and education, 9
and item response theory, 10
and licensing, 9
and performance of candidates, 3
and question of primary interest, 4
and test score, 3
and theory of testlets, 3
computerized form of, 9

Cambridge University Press
978-0-521-86272-1 - Testlet Response Theory and Its Applications
Howard Wainer, Eric T. Bradlow and Xiaohui Wang
Index

More information
Subject Index

content balancing in, 48
cross-information in, 48
error in, 7
first step in preparing test, 4
fundamental principle of, 3
key questions related to, 4
nonadaptive form of context effects in, 51
item location in, 47
ordering of items in, 50
predictive accuracy in, 5
question of robustness in, 5
scoring rule in, 5
use of computer algorithm in, 49
use of multiple choice item in, 5
testlet, 106, 110, 111, 115
advantages of, 53
alternative approach to, 52
and polytomous IRT models, 72
and psychometric scoring model, 60
and test scoring model, 56
advantages of, 53
alternative approach to, 52
and polytomous IRT models, 72
and psychometric scoring model, 60
and test scoring model, 56
and true score curves, 94
and use of factor analytic vocabulary, 110
and White/African-American performance, 91
as constructing tests method, 44
assessment accuracy by, 65
broad categories of, 60
case study for, 91
concept of, 53, 60
conditional independence in context effects in, 55
covariates effect, 163
data matrix score pattern, 82
DIF detection, 80
differential alternative functioning (DAF), 81
DIFferential item functioning (DIF), 78, 82, 91, 97
error of equating in, 57
expected true score in, 95
hierarchical form of, 65
information extraction from, 107
IRT model for, 77
item presentation algorithm in, 62
item selection algorithm in, 107
lack of fit in, 55
latent trait approach to, 72
linear administration of, 65
local dependence of item in, 73, 136
local independence in, 73
nonresponse theory and missing test data set, 186
parameters equality constraints, 91
polytomous model, 211
psychometric theory of, 108
reasons for using, 106
reliability of tests, 74
robustness in, 56
Run Out of Time (ROT), 187
scoring model for, 61, 108
traditional reading comprehension in, 53
unidimensional item response model for, 54
unidimensional model in, 55
Validity-Based Scoring (VBS) approach in, 67
White/African-American (DIF) performance, 91, 92
testlet response theory (TRT), 57, 108, 113
and bi-factor model, 110
and polychotomous scoring of tests, 111
and United States Medical Licensing Examination (USMLE), 158
binary portion of model for, 222
description of, 110
goal of, 118
model item parameter estimate, 226
model parameters and covariates of interest, 184
origin of, 60
utilized for screening survey of (breast cancer patients), 169
version of, 114
testlet response theory model, 182
testlet variance, 128, 129, 130, 134, 138, 140
log-normal prior for, 157
test-scoring algorithm, 82
total impact concept, 96
tracelines, 173
true score theory, 10, 14, 15, 22, 57, 114
and reliability, 15, 76, 114
and score estimation, 20, 21
error variance, 114
fundamental idea of, 15
Spearman-Brown Formula, 15
variance in, 16
unconditional maximum likelihood (UML), 27
United States Medical Licensing Examination (USMLE), 158, 221, 224
Validity-Based Scoring approach, 67, 69
and algebra testlet, 69
vignette word count, covariate, 158, 159, 163
writing ability multiple choice item/test to measure, 7