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I am the very Model for a Student Mathematical

I am the very model for a student mathematical;

I’'ve information rational, and logical and practical.

I know the laws of algebra, and find them quite symmetrical,
And even know the meaning of ‘a variate antithetical’.

I'm extremely well acquainted, with all things mathematical.

I understand equations, both the simple and quadratical.
About binomial theorems I'm teeming with a lot o’news,
With many cheerful facts about the square of the hypotenuse.

I'm very good at integral and differential calculus,
And solving paradoxes that so often seem to rankle us.
In short in matters rational, and logical and practical,
I am the very model for a student mathematical.

I know the singularities of equations differential,

And some of these are regular, but the rest are quite essential.

I quote the results of giants; with Euler, Newton, Gauss, Laplace,
And can calculate an orbit, given a centre, force and mass.

I can reconstruct equations, both canonical and formal,
And write all kinds of matrices, orthogonal, real and normal.
I show how to tackle problems that one has never met before,
By analogy or example, or with some clever metaphor.

I seldom use equivalence to help decide upon a class,
But often find an integral, using a contour o’er a pass.
In short in matters rational, and logical and practical,
I am the very model for a student mathematical.

When you have learnt just what is meant by ‘Jacobian’ and ‘Abelian’;
When you at sight can estimate, for the modal, mean and median;
When describing normal subgroups is much more than recitation;
When you understand precisely what is ‘quantum excitation’;

When you know enough statistics that you can recognise RV;
When you have learnt all advances that have been made in SVD;
And when you can spot the transform that solves some tricky PDE,
You will feel no better student has ever sat for a degree.

Your accumulated knowledge, whilst extensive and exemplary,

Will have only been brought down to the beginning of last century,
But still in matters rational, and logical and practical,

You’ll be the very model of a student mathematical.

KFR, with apologies to W.S. Gilbert
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Preface to the third edition

As is natural, in the four years since the publication of the second edition of
this book we have somewhat modified our views on what should be included
and how it should be presented. In this new edition, although the range of topics
covered has been extended, there has been no significant shift in the general level
of difficulty or in the degree of mathematical sophistication required. Further, we
have aimed to preserve the same style of presentation as seems to have been well
received in the first two editions. However, a significant change has been made
to the format of the chapters, specifically to the way that the exercises, together
with their hints and answers, have been treated; the details of the change are
explained below.

The two major chapters that are new in this third edition are those dealing with
‘special functions’ and the applications of complex variables. The former presents
a systematic account of those functions that appear to have arisen in a more
or less haphazard way as a result of studying particular physical situations, and
are deemed ‘special’ for that reason. The treatment presented here shows that,
in fact, they are nearly all particular cases of the hypergeometric or confluent
hypergeometric functions, and are special only in the sense that the parameters
of the relevant function take simple or related values.

The second new chapter describes how the properties of complex variables can
be used to tackle problems arising from the description of physical situations
or from other seemingly unrelated areas of mathematics. To topics treated in
earlier editions, such as the solution of Laplace’s equation in two dimensions, the
summation of series, the location of zeros of polynomials and the calculation of
inverse Laplace transforms, has been added new material covering Airy integrals,
saddle-point methods for contour integral evaluation, and the WKB approach to
asymptotic forms.

Other new material includes a stand-alone chapter on the use of coordinate-free
operators to establish valuable results in the field of quantum mechanics; amongst

XX
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PREFACE TO THE THIRD EDITION

the physical topics covered are angular momentum and uncertainty principles.
There are also significant additions to the treatment of numerical integration.
In particular, Gaussian quadrature based on Legendre, Laguerre, Hermite and
Chebyshev polynomials is discussed, and appropriate tables of points and weights
are provided.

We now turn to the most obvious change to the format of the book, namely
the way that the exercises, hints and answers are treated. The second edition of
Mathematical Methods for Physics and Engineering carried more than twice as
many exercises, based on its various chapters, as did the first. In its preface we
discussed the general question of how such exercises should be treated but, in
the end, decided to provide hints and outline answers to all problems, as in the
first edition. This decision was an uneasy one as, on the one hand, it did not
allow the exercises to be set as totally unaided homework that could be used for
assessment purposes but, on the other, it did not give a full explanation of how
to tackle a problem when a student needed explicit guidance or a model answer.

In order to allow both of these educationally desirable goals to be achieved,
we have, in this third edition, completely changed the way in which this matter
is handled. A large number of exercises have been included in the penultimate
subsections of the appropriate, sometimes reorganised, chapters. Hints and outline
answers are given, as previously, in the final subsections, but only for the odd-
numbered exercises. This leaves all even-numbered exercises free to be set as
unaided homework, as described below.

For the four hundred plus odd-numbered exercises, complete solutions are
available, to both students and their teachers, in the form of a separate manual,
Student Solutions Manual for Mathematical Methods for Physics and Engineering
(Cambridge: Cambridge University Press, 2006); the hints and outline answers
given in this main text are brief summaries of the model answers given in the
manual. There, each original exercise is reproduced and followed by a fully
worked solution. For those original exercises that make internal reference to this
text or to other (even-numbered) exercises not included in the solutions manual,
the questions have been reworded, usually by including additional information,
so that the questions can stand alone.

In many cases, the solution given in the manual is even fuller than one that
might be expected of a good student that has understood the material. This is
because we have aimed to make the solutions instructional as well as utilitarian.
To this end, we have included comments that are intended to show how the
plan for the solution is fomulated and have given the justifications for particular
intermediate steps (something not always done, even by the best of students). We
have also tried to write each individual substituted formula in the form that best
indicates how it was obtained, before simplifying it at the next or a subsequent
stage. Where several lines of algebraic manipulation or calculus are needed to
obtain a final result, they are normally included in full; this should enable the
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student to determine whether an incorrect answer is due to a misunderstanding
of principles or to a technical error.

The remaining four hundred or so even-numbered exercises have no hints or
answers, outlined or detailed, available for general access. They can therefore be
used by instructors as a basis for setting unaided homework. Full solutions to
these exercises, in the same general format as those appearing in the manual
(though they may contain references to the main text or to other exercises), are
available without charge to accredited teachers as downloadable pdf files on the
password-protected website http://www.cambridge.org/9780521679718. Teachers
wishing to have access to the website should contact solutions@cambridge.org
for registration details.

In all new publications, errors and typographical mistakes are virtually un-
avoidable, and we would be grateful to any reader who brings instances to
our attention. Retrospectively, we would like to record our thanks to Reinhard
Gerndt, Paul Renteln and Joe Tenn for making us aware of some errors in
the second edition. Finally, we are extremely grateful to Dave Green for his
considerable and continuing advice concerning IATEX.

Ken Riley, Michael Hobson,
Cambridge, 2006
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Preface to the second edition

Since the publication of the first edition of this book, both through teaching the
material it covers and as a result of receiving helpful comments from colleagues,
we have become aware of the desirability of changes in a number of areas.
The most important of these is that the mathematical preparation of current
senior college and university entrants is now less thorough than it used to be.
To match this, we decided to include a preliminary chapter covering areas such
as polynomial equations, trigonometric identities, coordinate geometry, partial
fractions, binomial expansions, necessary and sufficient condition and proof by
induction and contradiction.

Whilst the general level of what is included in this second edition has not
been raised, some areas have been expanded to take in topics we now feel were
not adequately covered in the first. In particular, increased attention has been
given to non-square sets of simultaneous linear equations and their associated
matrices. We hope that this more extended treatment, together with the inclusion
of singular value matrix decomposition, will make the material of more practical
use to engineering students. In the same spirit, an elementary treatment of linear
recurrence relations has been included. The topic of normal modes has been given
a small chapter of its own, though the links to matrices on the one hand, and to
representation theory on the other, have not been lost.

Elsewhere, the presentation of probability and statistics has been reorganised to
give the two aspects more nearly equal weights. The early part of the probability
chapter has been rewritten in order to present a more coherent development
based on Boolean algebra, the fundamental axioms of probability theory and
the properties of intersections and unions. Whilst this is somewhat more formal
than previously, we think that it has not reduced the accessibility of these topics
and hope that it has increased it. The scope of the chapter has been somewhat
extended to include all physically important distributions and an introduction to
cumulants.

Xxiii
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Statistics now occupies a substantial chapter of its own, one that includes sys-
tematic discussions of estimators and their efficiency, sample distributions and ¢-
and F-tests for comparing means and variances. Other new topics are applications
of the chi-squared distribution, maximume-likelihood parameter estimation and
least-squares fitting. In other chapters we have added material on the following
topics: curvature, envelopes, curve-sketching, more refined numerical methods
for differential equations and the elements of integration using Monte Carlo
techniques.

Over the last four years we have received somewhat mixed feedback about
the number of exercises at the ends of the various chapters. After consideration,
we decided to increase the number substantially, partly to correspond to the
additional topics covered in the text but mainly to give both students and
their teachers a wider choice. There are now nearly 800 such exercises, many with
several parts. An even more vexed question has been whether to provide hints and
answers to all the exercises or just to ‘the odd-numbered’ ones, as is the normal
practice for textbooks in the United States, thus making the remainder more
suitable for setting as homework. In the end, we decided that hints and outline
solutions should be provided for all the exercises, in order to facilitate independent
study while leaving the details of the calculation as a task for the student.

In conclusion, we hope that this edition will be thought by its users to be
‘heading in the right direction” and would like to place on record our thanks to
all who have helped to bring about the changes and adjustments. Naturally, those
colleagues who have noted errors or ambiguities in the first edition and brought
them to our attention figure high on the list, as do the staff at The Cambridge
University Press. In particular, we are grateful to Dave Green for continued IXTEX
advice, Susan Parkinson for copy-editing the second edition with her usual keen
eye for detail and flair for crafting coherent prose and Alison Woollatt for once
again turning our basic IXTEX into a beautifully typeset book. Our thanks go
to all of them, though of course we accept full responsibility for any remaining
errors or ambiguities, of which, as with any new publication, there are bound to
be some.

On a more personal note, KFR again wishes to thank his wife Penny for her
unwavering support, not only in his academic and tutorial work, but also in their
joint efforts to convert time at the bridge table into ‘green points’ on their record.
MPH is once more indebted to his wife, Becky, and his mother, Pat, for their
tireless support and encouragement above and beyond the call of duty. MPH
dedicates his contribution to this book to the memory of his father, Ronald
Leonard Hobson, whose gentle kindness, patient understanding and unbreakable
spirit made all things seem possible.

Ken Riley, Michael Hobson
Cambridge, 2002
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A knowledge of mathematical methods is important for an increasing number of
university and college courses, particularly in physics, engineering and chemistry,
but also in more general science. Students embarking on such courses come from
diverse mathematical backgrounds, and their core knowledge varies considerably.
We have therefore decided to write a textbook that assumes knowledge only of
material that can be expected to be familiar to all the current generation of
students starting physical science courses at university. In the United Kingdom
this corresponds to the standard of Mathematics A-level, whereas in the United
States the material assumed is that which would normally be covered at junior
college.

Starting from this level, the first six chapters cover a collection of topics
with which the reader may already be familiar, but which are here extended
and applied to typical problems encountered by first-year university students.
They are aimed at providing a common base of general techniques used in
the development of the remaining chapters. Students who have had additional
preparation, such as Further Mathematics at A-level, will find much of this
material straightforward.

Following these opening chapters, the remainder of the book is intended to
cover at least that mathematical material which an undergraduate in the physical
sciences might encounter up to the end of his or her course. The book is also
appropriate for those beginning graduate study with a mathematical content, and
naturally much of the material forms parts of courses for mathematics students.
Furthermore, the text should provide a useful reference for research workers.

The general aim of the book is to present a topic in three stages. The first
stage is a qualitative introduction, wherever possible from a physical point of
view. The second is a more formal presentation, although we have deliberately
avoided strictly mathematical questions such as the existence of limits, uniform
convergence, the interchanging of integration and summation orders, etc. on the
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grounds that ‘this is the real world; it must behave reasonably’. Finally a worked
example is presented, often drawn from familiar situations in physical science
and engineering. These examples have generally been fully worked, since, in
the authors’ experience, partially worked examples are unpopular with students.
Only in a few cases, where trivial algebraic manipulation is involved, or where
repetition of the main text would result, has an example been left as an exercise
for the reader. Nevertheless, a number of exercises also appear at the end of each
chapter, and these should give the reader ample opportunity to test his or her
understanding. Hints and answers to these exercises are also provided.

With regard to the presentation of the mathematics, it has to be accepted that
many equations (especially partial differential equations) can be written more
compactly by using subscripts, e.g. u,, for a second partial derivative, instead of
the more familiar 0?u/dxdy, and that this certainly saves typographical space.
However, for many students, the labour of mentally unpacking such equations
is sufficiently great that it is not possible to think of an equation’s physical
interpretation at the same time. Consequently, wherever possible we have decided
to write out such expressions in their more obvious but longer form.

During the writing of this book we have received much help and encouragement
from various colleagues at the Cavendish Laboratory, Clare College, Trinity Hall
and Peterhouse. In particular, we would like to thank Peter Scheuer, whose
comments and general enthusiasm proved invaluable in the early stages. For
reading sections of the manuscript, for pointing out misprints and for numerous
useful comments, we thank many of our students and colleagues at the University
of Cambridge. We are especially grateful to Chris Doran, John Huber, Garth
Leder, Tom Korner and, not least, Mike Stobbs, who, sadly, died before the book
was completed. We also extend our thanks to the University of Cambridge and
the Cavendish teaching staff, whose examination questions and lecture hand-outs
have collectively provided the basis for some of the examples included. Of course,
any errors and ambiguities remaining are entirely the responsibility of the authors,
and we would be most grateful to have them brought to our attention.

We are indebted to Dave Green for a great deal of advice concerning typesetting
in KTEX and to Andrew Lovatt for various other computing tips. Our thanks
also go to Anja Visser and Graca Rocha for enduring many hours of (sometimes
heated) debate. At Cambridge University Press, we are very grateful to our editor
Adam Black for his help and patience and to Alison Woollatt for her expert
typesetting of such a complicated text. We also thank our copy-editor Susan
Parkinson for many useful suggestions that have undoubtedly improved the style
of the book.

Finally, on a personal note, KFR wishes to thank his wife Penny, not only for
a long and happy marriage, but also for her support and understanding during
his recent illness — and when things have not gone too well at the bridge table!
MPH is indebted both to Rebecca Morris and to his parents for their tireless
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support and patience, and for their unending supplies of tea. SIB is grateful to
Anthony Gritten for numerous relaxing discussions about J. S. Bach, to Susannah
Ticciati for her patience and understanding, and to Kate Isaak for her calming
late-night e-mails from the USA.

Ken Riley, Michael Hobson and Stephen Bence
Cambridge, 1997
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