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I am the very Model for a Student Mathematical

I am the very model for a student mathematical;

I’ve information rational, and logical and practical.

I know the laws of algebra, and find them quite symmetrical,

And even know the meaning of ‘a variate antithetical’.

I’m extremely well acquainted, with all things mathematical.

I understand equations, both the simple and quadratical.

About binomial theorems I’m teeming with a lot o’news,

With many cheerful facts about the square of the hypotenuse.

I’m very good at integral and differential calculus,

And solving paradoxes that so often seem to rankle us.

In short in matters rational, and logical and practical,

I am the very model for a student mathematical.

I know the singularities of equations differential,

And some of these are regular, but the rest are quite essential.

I quote the results of giants; with Euler, Newton, Gauss, Laplace,

And can calculate an orbit, given a centre, force and mass.

I can reconstruct equations, both canonical and formal,

And write all kinds of matrices, orthogonal, real and normal.

I show how to tackle problems that one has never met before,

By analogy or example, or with some clever metaphor.

I seldom use equivalence to help decide upon a class,

But often find an integral, using a contour o’er a pass.

In short in matters rational, and logical and practical,

I am the very model for a student mathematical.

When you have learnt just what is meant by ‘Jacobian’ and ‘Abelian’;

When you at sight can estimate, for the modal, mean and median;

When describing normal subgroups is much more than recitation;

When you understand precisely what is ‘quantum excitation’;

When you know enough statistics that you can recognise RV;

When you have learnt all advances that have been made in SVD;

And when you can spot the transform that solves some tricky PDE,

You will feel no better student has ever sat for a degree.

Your accumulated knowledge, whilst extensive and exemplary,

Will have only been brought down to the beginning of last century,

But still in matters rational, and logical and practical,

You’ll be the very model of a student mathematical.

KFR, with apologies to W.S. Gilbert

xix
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Preface to the third edition

As is natural, in the four years since the publication of the second edition of

this book we have somewhat modified our views on what should be included

and how it should be presented. In this new edition, although the range of topics

covered has been extended, there has been no significant shift in the general level

of difficulty or in the degree of mathematical sophistication required. Further, we

have aimed to preserve the same style of presentation as seems to have been well

received in the first two editions. However, a significant change has been made

to the format of the chapters, specifically to the way that the exercises, together

with their hints and answers, have been treated; the details of the change are

explained below.

The two major chapters that are new in this third edition are those dealing with

‘special functions’ and the applications of complex variables. The former presents

a systematic account of those functions that appear to have arisen in a more

or less haphazard way as a result of studying particular physical situations, and

are deemed ‘special’ for that reason. The treatment presented here shows that,

in fact, they are nearly all particular cases of the hypergeometric or confluent

hypergeometric functions, and are special only in the sense that the parameters

of the relevant function take simple or related values.

The second new chapter describes how the properties of complex variables can

be used to tackle problems arising from the description of physical situations

or from other seemingly unrelated areas of mathematics. To topics treated in

earlier editions, such as the solution of Laplace’s equation in two dimensions, the

summation of series, the location of zeros of polynomials and the calculation of

inverse Laplace transforms, has been added new material covering Airy integrals,

saddle-point methods for contour integral evaluation, and the WKB approach to

asymptotic forms.

Other new material includes a stand-alone chapter on the use of coordinate-free

operators to establish valuable results in the field of quantum mechanics; amongst

xx
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PREFACE TO THE THIRD EDITION

the physical topics covered are angular momentum and uncertainty principles.

There are also significant additions to the treatment of numerical integration.

In particular, Gaussian quadrature based on Legendre, Laguerre, Hermite and

Chebyshev polynomials is discussed, and appropriate tables of points and weights

are provided.

We now turn to the most obvious change to the format of the book, namely

the way that the exercises, hints and answers are treated. The second edition of

Mathematical Methods for Physics and Engineering carried more than twice as

many exercises, based on its various chapters, as did the first. In its preface we

discussed the general question of how such exercises should be treated but, in

the end, decided to provide hints and outline answers to all problems, as in the

first edition. This decision was an uneasy one as, on the one hand, it did not

allow the exercises to be set as totally unaided homework that could be used for

assessment purposes but, on the other, it did not give a full explanation of how

to tackle a problem when a student needed explicit guidance or a model answer.

In order to allow both of these educationally desirable goals to be achieved,

we have, in this third edition, completely changed the way in which this matter

is handled. A large number of exercises have been included in the penultimate

subsections of the appropriate, sometimes reorganised, chapters. Hints and outline

answers are given, as previously, in the final subsections, but only for the odd-

numbered exercises. This leaves all even-numbered exercises free to be set as

unaided homework, as described below.

For the four hundred plus odd-numbered exercises, complete solutions are

available, to both students and their teachers, in the form of a separate manual,

Student Solutions Manual for Mathematical Methods for Physics and Engineering

(Cambridge: Cambridge University Press, 2006); the hints and outline answers

given in this main text are brief summaries of the model answers given in the

manual. There, each original exercise is reproduced and followed by a fully

worked solution. For those original exercises that make internal reference to this

text or to other (even-numbered) exercises not included in the solutions manual,

the questions have been reworded, usually by including additional information,

so that the questions can stand alone.

In many cases, the solution given in the manual is even fuller than one that

might be expected of a good student that has understood the material. This is

because we have aimed to make the solutions instructional as well as utilitarian.

To this end, we have included comments that are intended to show how the

plan for the solution is fomulated and have given the justifications for particular

intermediate steps (something not always done, even by the best of students). We

have also tried to write each individual substituted formula in the form that best

indicates how it was obtained, before simplifying it at the next or a subsequent

stage. Where several lines of algebraic manipulation or calculus are needed to

obtain a final result, they are normally included in full; this should enable the

xxi
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PREFACE TO THE THIRD EDITION

student to determine whether an incorrect answer is due to a misunderstanding

of principles or to a technical error.

The remaining four hundred or so even-numbered exercises have no hints or

answers, outlined or detailed, available for general access. They can therefore be

used by instructors as a basis for setting unaided homework. Full solutions to

these exercises, in the same general format as those appearing in the manual

(though they may contain references to the main text or to other exercises), are

available without charge to accredited teachers as downloadable pdf files on the

password-protected website http://www.cambridge.org/9780521679718. Teachers

wishing to have access to the website should contact solutions@cambridge.org

for registration details.

In all new publications, errors and typographical mistakes are virtually un-

avoidable, and we would be grateful to any reader who brings instances to

our attention. Retrospectively, we would like to record our thanks to Reinhard

Gerndt, Paul Renteln and Joe Tenn for making us aware of some errors in

the second edition. Finally, we are extremely grateful to Dave Green for his

considerable and continuing advice concerning LATEX.

Ken Riley, Michael Hobson,

Cambridge, 2006
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Preface to the second edition

Since the publication of the first edition of this book, both through teaching the

material it covers and as a result of receiving helpful comments from colleagues,

we have become aware of the desirability of changes in a number of areas.

The most important of these is that the mathematical preparation of current

senior college and university entrants is now less thorough than it used to be.

To match this, we decided to include a preliminary chapter covering areas such

as polynomial equations, trigonometric identities, coordinate geometry, partial

fractions, binomial expansions, necessary and sufficient condition and proof by

induction and contradiction.

Whilst the general level of what is included in this second edition has not

been raised, some areas have been expanded to take in topics we now feel were

not adequately covered in the first. In particular, increased attention has been

given to non-square sets of simultaneous linear equations and their associated

matrices. We hope that this more extended treatment, together with the inclusion

of singular value matrix decomposition, will make the material of more practical

use to engineering students. In the same spirit, an elementary treatment of linear

recurrence relations has been included. The topic of normal modes has been given

a small chapter of its own, though the links to matrices on the one hand, and to

representation theory on the other, have not been lost.

Elsewhere, the presentation of probability and statistics has been reorganised to

give the two aspects more nearly equal weights. The early part of the probability

chapter has been rewritten in order to present a more coherent development

based on Boolean algebra, the fundamental axioms of probability theory and

the properties of intersections and unions. Whilst this is somewhat more formal

than previously, we think that it has not reduced the accessibility of these topics

and hope that it has increased it. The scope of the chapter has been somewhat

extended to include all physically important distributions and an introduction to

cumulants.

xxiii
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PREFACE TO THE SECOND EDITION

Statistics now occupies a substantial chapter of its own, one that includes sys-

tematic discussions of estimators and their efficiency, sample distributions and t-

and F-tests for comparing means and variances. Other new topics are applications

of the chi-squared distribution, maximum-likelihood parameter estimation and

least-squares fitting. In other chapters we have added material on the following

topics: curvature, envelopes, curve-sketching, more refined numerical methods

for differential equations and the elements of integration using Monte Carlo

techniques.

Over the last four years we have received somewhat mixed feedback about

the number of exercises at the ends of the various chapters. After consideration,

we decided to increase the number substantially, partly to correspond to the

additional topics covered in the text but mainly to give both students and

their teachers a wider choice. There are now nearly 800 such exercises, many with

several parts. An even more vexed question has been whether to provide hints and

answers to all the exercises or just to ‘the odd-numbered’ ones, as is the normal

practice for textbooks in the United States, thus making the remainder more

suitable for setting as homework. In the end, we decided that hints and outline

solutions should be provided for all the exercises, in order to facilitate independent

study while leaving the details of the calculation as a task for the student.

In conclusion, we hope that this edition will be thought by its users to be

‘heading in the right direction’ and would like to place on record our thanks to

all who have helped to bring about the changes and adjustments. Naturally, those

colleagues who have noted errors or ambiguities in the first edition and brought

them to our attention figure high on the list, as do the staff at The Cambridge

University Press. In particular, we are grateful to Dave Green for continued LATEX

advice, Susan Parkinson for copy-editing the second edition with her usual keen

eye for detail and flair for crafting coherent prose and Alison Woollatt for once

again turning our basic LATEX into a beautifully typeset book. Our thanks go

to all of them, though of course we accept full responsibility for any remaining

errors or ambiguities, of which, as with any new publication, there are bound to

be some.

On a more personal note, KFR again wishes to thank his wife Penny for her

unwavering support, not only in his academic and tutorial work, but also in their

joint efforts to convert time at the bridge table into ‘green points’ on their record.

MPH is once more indebted to his wife, Becky, and his mother, Pat, for their

tireless support and encouragement above and beyond the call of duty. MPH

dedicates his contribution to this book to the memory of his father, Ronald

Leonard Hobson, whose gentle kindness, patient understanding and unbreakable

spirit made all things seem possible.

Ken Riley, Michael Hobson

Cambridge, 2002
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Preface to the first edition

A knowledge of mathematical methods is important for an increasing number of

university and college courses, particularly in physics, engineering and chemistry,

but also in more general science. Students embarking on such courses come from

diverse mathematical backgrounds, and their core knowledge varies considerably.

We have therefore decided to write a textbook that assumes knowledge only of

material that can be expected to be familiar to all the current generation of

students starting physical science courses at university. In the United Kingdom

this corresponds to the standard of Mathematics A-level, whereas in the United

States the material assumed is that which would normally be covered at junior

college.

Starting from this level, the first six chapters cover a collection of topics

with which the reader may already be familiar, but which are here extended

and applied to typical problems encountered by first-year university students.

They are aimed at providing a common base of general techniques used in

the development of the remaining chapters. Students who have had additional

preparation, such as Further Mathematics at A-level, will find much of this

material straightforward.

Following these opening chapters, the remainder of the book is intended to

cover at least that mathematical material which an undergraduate in the physical

sciences might encounter up to the end of his or her course. The book is also

appropriate for those beginning graduate study with a mathematical content, and

naturally much of the material forms parts of courses for mathematics students.

Furthermore, the text should provide a useful reference for research workers.

The general aim of the book is to present a topic in three stages. The first

stage is a qualitative introduction, wherever possible from a physical point of

view. The second is a more formal presentation, although we have deliberately

avoided strictly mathematical questions such as the existence of limits, uniform

convergence, the interchanging of integration and summation orders, etc. on the

xxv
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PREFACE TO THE FIRST EDITION

grounds that ‘this is the real world; it must behave reasonably’. Finally a worked

example is presented, often drawn from familiar situations in physical science

and engineering. These examples have generally been fully worked, since, in

the authors’ experience, partially worked examples are unpopular with students.

Only in a few cases, where trivial algebraic manipulation is involved, or where

repetition of the main text would result, has an example been left as an exercise

for the reader. Nevertheless, a number of exercises also appear at the end of each

chapter, and these should give the reader ample opportunity to test his or her

understanding. Hints and answers to these exercises are also provided.

With regard to the presentation of the mathematics, it has to be accepted that

many equations (especially partial differential equations) can be written more

compactly by using subscripts, e.g. uxy for a second partial derivative, instead of

the more familiar ∂2u/∂x∂y, and that this certainly saves typographical space.

However, for many students, the labour of mentally unpacking such equations

is sufficiently great that it is not possible to think of an equation’s physical

interpretation at the same time. Consequently, wherever possible we have decided

to write out such expressions in their more obvious but longer form.

During the writing of this book we have received much help and encouragement

from various colleagues at the Cavendish Laboratory, Clare College, Trinity Hall

and Peterhouse. In particular, we would like to thank Peter Scheuer, whose

comments and general enthusiasm proved invaluable in the early stages. For

reading sections of the manuscript, for pointing out misprints and for numerous

useful comments, we thank many of our students and colleagues at the University

of Cambridge. We are especially grateful to Chris Doran, John Huber, Garth

Leder, Tom Körner and, not least, Mike Stobbs, who, sadly, died before the book

was completed. We also extend our thanks to the University of Cambridge and

the Cavendish teaching staff, whose examination questions and lecture hand-outs

have collectively provided the basis for some of the examples included. Of course,

any errors and ambiguities remaining are entirely the responsibility of the authors,

and we would be most grateful to have them brought to our attention.

We are indebted to Dave Green for a great deal of advice concerning typesetting

in LATEX and to Andrew Lovatt for various other computing tips. Our thanks

also go to Anja Visser and Graça Rocha for enduring many hours of (sometimes

heated) debate. At Cambridge University Press, we are very grateful to our editor

Adam Black for his help and patience and to Alison Woollatt for her expert

typesetting of such a complicated text. We also thank our copy-editor Susan

Parkinson for many useful suggestions that have undoubtedly improved the style

of the book.

Finally, on a personal note, KFR wishes to thank his wife Penny, not only for

a long and happy marriage, but also for her support and understanding during

his recent illness – and when things have not gone too well at the bridge table!

MPH is indebted both to Rebecca Morris and to his parents for their tireless
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PREFACE TO THE FIRST EDITION

support and patience, and for their unending supplies of tea. SJB is grateful to

Anthony Gritten for numerous relaxing discussions about J. S. Bach, to Susannah

Ticciati for her patience and understanding, and to Kate Isaak for her calming

late-night e-mails from the USA.

Ken Riley, Michael Hobson and Stephen Bence

Cambridge, 1997
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