Data Analysis and Graphics Using R, Second Edition

Join the revolution ignited by the ground-breaking R system! Starting with an introduction to R, covering standard regression methods, then presenting more advanced topics, this book guides users through the practical and powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display and interpretation of data. The many worked examples, taken from real-world research, are accompanied by commentary on what is done and why. A website provides computer code and data sets, allowing readers to reproduce all analyses. Updates and solutions to selected exercises are also available. Assuming basic statistical knowledge and some experience of data analysis, the book is ideal for research scientists, final-year undergraduate or graduate level students of applied statistics, and practicing statisticians. It is both for learning and for reference.

This second edition reflects changes in R since 2003. There is new material on survival analysis, random coefficient models and the handling of high-dimensional data. The treatment of regression methods has been extended, including a brief discussion of errors in predictor variables. Both text and code have been revised throughout, and where possible simplified. New graphs have been added.

JOHN MAINDONALD is Visiting Fellow at the Centre for Mathematics and its Applications, Australian National University. He has collaborated extensively with scientists in a wide range of application areas, from medicine and public health to population genetics, machine learning, economic history and forensic linguistics.

JOHN BRAUN is Associate Professor of Statistical and Actuarial Sciences, University of Western Ontario. He has collaborated with biostatisticians, biologists, psychologists and most recently has become involved with a network of forestry researchers.

Data Analysis and Graphics Using R – an Example-Based Approach

Second Edition

CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS

Editorial Board

R. Gill (Department of Mathematics, Utrecht University)

B.D. Ripley (Department of Statistics, University of Oxford)

S. Ross (Department of Industrial & Systems Engineering, University of Southern California)

B. W. Silverman (St. Peter's College, Oxford)

M. Stein (Department of Statistics, University of Chicago)

This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical programming. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books also contain applications and discussions of new techniques made possible by advances in computational practice.

Already published

- 1. Bootstrap Methods and Their Application, by A.C. Davison and D.V. Hinkley
- 2. Markov Chains, by J. Norris
- 3. Asymptotic Statistics, by A.W. van der Vaart
- 4. Wavelet Methods for Time Series Analysis, by Donald B. Percival and Andrew T. Walden
- 5. Bayesian Methods, by Thomas Leonard and John S. J. Hsu
- 6. Empirical Processes in M-Estimation, by Sara van de Geer
- 7. Numerical Methods of Statistics, by John F. Monahan
- 8. A User's Guide to Measure Theoretic Probability, by David Pollard
- 9. The Estimation and Tracking of Frequency, by B.G. Quinn and E.J. Hannan
- 10. Data Analysis and Graphics using R, by John Maindonald and W. John Braun
- 11. Statistical Models, by A.C. Davison
- 12. Semiparametric Regression, by D. Ruppert, M. P. Wand, R. J. Carroll
- 13. Exercises in Probability, by Loic Chaumont and Marc Yor
- 14. Statistical Analysis of Stochastic Processes in Time, by J. K. Lindsey
- 15. Measure Theory and Filtering, by Lakhdar Aggoun and Robert Elliott
- 16. Essentials of Statistical Inference, by G.A. Young and R.L. Smith
- 17. Elements of Distribution Theory, by Thomas A. Severini
- 18. Statistical Mechanics of Disordered Systems, by Anton Bovier
- 19. The Coordinate-Free Approach to Linear Models, by Michael J. Wichura
- 20. Random Graph Dynamics, by Rick Durrett

Data Analysis and Graphics Using R – an Example-Based Approach

Second Edition

John Maindonald

Centre for Mathematics and its Applications, Australian National University

and

W. John Braun

Department of Statistical and Actuarial Science, University of Western Ontario

Cambridge University Press 978-0-521-86116-8 - Data Analysis and Graphics Using R - an Example-Based Approach, Second Edition John Maindonald and W. John Braun Frontmatter <u>More information</u>

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521861168

> © Cambridge University Press 2003 © John Maindonald and W. John Braun 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2003 Second edition 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-86116-8 hardback ISBN-10 0-521-86116-0 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> It is easy to lie with statistics. It is hard to tell the truth without statistics. [Andrejs Dunkels]

> > ... technology tends to overwhelm common sense.

[D. A. Freedman]

> For Amelia and Luke also Shireen, Peter, Lorraine, Evan and Winifred

For Susan, Matthew and Phillip

Contents

Preface

1	A b	rief int	roduction to R	1	
	1.1	An overview of R			
		1.1.1	A short R session	1	
		1.1.2	The uses of R	5	
		1.1.3	Online help	6	
		1.1.4	Further steps in learning R	8	
	1.2	Data input, packages and the search list			
		1.2.1	Reading data from a file	8	
		1.2.2	R packages	9	
	1.3	Vector	rs, factors and univariate time series	10	
		1.3.1	Vectors in R	10	
		1.3.2	Concatenation – joining vector objects	10	
		1.3.3	Subsets of vectors	11	
		1.3.4	Patterned data	11	
		1.3.5	Missing values	12	
		1.3.6	Factors	13	
		1.3.7	Time series	14	
	1.4	Data f	frames and matrices	14	
		1.4.1	The attaching of data frames	16	
		1.4.2	Aggregation, stacking and unstacking	17	
		1.4.3*	Data frames and matrices	17	
	1.5	.5 Functions, operators and loops		18	
		1.5.1	Built-in functions	18	
		1.5.2	Generic functions and the class of an object	20	
		1.5.3	User-written functions	21	
		1.5.4	Relational and logical operators and operations	22	
		1.5.5	Selection and matching	23	
		1.5.6	Functions for working with missing values	23	
		1.5.7*	Looping	24	
	1.6	Graph	nics in R	24	
		1.6.1	The function plot () and allied functions	25	
		1.6.2	The use of color	27	

Cambridge University Press 978-0-521-86116-8 - Data Analysis and Graphics Using R - an Example-Based Approach, Second Edition John Maindonald and W. John Braun Frontmatter <u>More information</u>

х

2

Contents

	162	The importance of concept action	27
	1.6.3	The importance of aspect ratio	27
	1.6.4	Dimensions and other settings for graphics devices	28
	1.6.5	The plotting of expressions and mathematical symbols	28
	1.6.6	Identification and location on the figure region	29
	1.6.7	Plot methods for objects other than vectors	29
	1.6.8	Lattice graphics versus base graphics – xyplot () versus plot ()	30
	1.6.9	Further information on graphics	30
	1.6.10		30
1.7		(trellis) graphics	31
1.8		nal points on the use of R	33
1.9	Recap		36
1.10		r reading	36
	1.10.1	References for further reading	37
1.11	Exercis	ses	37
Style	es of data	a analysis	43
2.1	Reveal	ing views of the data	43
	2.1.1	Views of a single sample	44
	2.1.2	Patterns in univariate time series	48
	2.1.3	Patterns in bivariate data	50
	2.1.4	Patterns in grouped data	52
	2.1.5*	Multiple variables and times	54
	2.1.6	Scatterplots, broken down by multiple factors	56
	2.1.7	What to look for in plots	58
2.2	Data si	ummary	59
	2.2.1	Counts	60
	2.2.2	Summaries of information from data frames	63
	2.2.3	Standard deviation and inter-quartile range	66
	2.2.4	Correlation	68
2.3	Statisti	cal analysis questions, aims and strategies	69
	2.3.1	How relevant and how reliable are the data?	70
	2.3.2	Helpful and unhelpful questions	70
	2.3.3	How will results be used?	71
	2.3.4	Formal and informal assessments	72
	2.3.5	Statistical analysis strategies	73
	2.3.6	Planning the formal analysis	73
	2.3.7	Changes to the intended plan of analysis	74
2.4	Recap		74
2.5	-	r reading	75
	2.5.1	References for further reading	75
2.6	Exercis	ses	75
Stati	stical m	odels	78
3.1	Regula		79
	3.1.1	Deterministic models	79

3

Cambridge University Press
978-0-521-86116-8 - Data Analysis and Graphics Using R - an Example-Based
Approach, Second Edition
John Maindonald and W. John Braun
Frontmatter
More information

		Contents	xi
	3.1.2	Models that include a random component	79
	3.1.3	Fitting models – the model formula	82
3.2	Distrib	putions: models for the random component	83
	3.2.1	Discrete distributions	84
	3.2.2	Continuous distributions	86
3.3	The us	es of random numbers	88
	3.3.1	Simulation	88
	3.3.2	Sampling from populations	89
3.4	Model	assumptions	90
	3.4.1	Random sampling assumptions - independence	91
	3.4.2	Checks for normality	92
	3.4.3	Checking other model assumptions	95
	3.4.4	Are non-parametric methods the answer?	95
	3.4.5	Why models matter – adding across contingency tables	95
	Recap		96
3.6		r reading	97
	3.6.1	References for further reading	97
3.7	Exerci	ses	97
An	introdu	ction to formal inference	101
4.1	Basic o	concepts of estimation	101
	4.1.1	Population parameters and sample statistics	101
	4.1.2	Sampling distributions	102
	4.1.3	Assessing accuracy – the standard error	102
	4.1.4	The standard error for the difference of means	103
	4.1.5*		104
	4.1.6	The sampling distribution of the <i>t</i> -statistic	104
4.2		ence intervals and hypothesis tests	107
	4.2.1	One- and two-sample intervals and tests for means	107
	4.2.2	Confidence intervals and tests for proportions	113
	4.2.3	Confidence intervals for the correlation	113
	4.2.4	Confidence intervals versus hypothesis tests	114
4.3		gency tables	115
	4.3.1	Rare and endangered plant species	117
	4.3.2	Additional notes	119
4.4		ay unstructured comparisons	120
	4.4.1	Displaying means for the one-way layout	123
	4.4.2	Multiple comparisons	124
	4.4.3	Data with a two-way structure, that is, two factors	125
	4.4.4	Presentation issues	126
	-	ise curves	126
4.6		with a nested variation structure	127
	4.6.1	Degrees of freedom considerations	128
	4.6.2	General multi-way analysis of variance designs	129

Cambridge University Press	
78-0-521-86116-8 - Data Analysis and Graphics Using R - an Example-Base	ed
Approach, Second Edition	
John Maindonald and W. John Braun	
Frontmatter	
Aore information	

xii

Contents

	4.7	Resam	pling methods for standard errors, tests and confidence	
		interva		129
		4.7.1	The one-sample permutation test	129
		4.7.2	The two-sample permutation test	130
		4.7.3*	Estimating the standard error of the median: bootstrapping	131
		4.7.4	Bootstrap estimates of confidence intervals	133
	4.8*	Theorie	es of inference	134
		4.8.1	Maximum likelihood estimation	135
		4.8.2	Bayesian estimation	136
		4.8.3	If there is strong prior information, use it!	136
	4.9	Recap		137
	4.10	Furthe	r reading	138
		4.10.1	References for further reading	138
	4.11	Exercis	ses	139
5	Regr	ession w	vith a single predictor	144
-	5.1		a line to data	144
		5.1.1		145
		5.1.2	-	146
		5.1.3	•	147
		5.1.4	L	148
		5.1.5	The analysis of variance table	150
	5.2	Outlier	rs, influence and robust regression	151
	5.3		rd errors and confidence intervals	153
		5.3.1		153
		5.3.2	-	154
		5.3.3*	Implications for design	155
	5.4	Regres	sion versus qualitative anova comparisons	157
		5.4.1	Issues of power	157
		5.4.2	The pattern of change	158
	5.5	Assessi	ing predictive accuracy	158
		5.5.1	Training/test sets and cross-validation	158
		5.5.2	Cross-validation – an example	159
		5.5.3*	Bootstrapping	161
	5.6*	A note	e on power transformations	164
		5.6.1*	General power transformations	164
	5.7		nd shape data	165
		5.7.1	Allometric growth	166
		5.7.2	There are two regression lines!	167
	5.8	The ma	odel matrix in regression	168

5.8The model matrix in regression1685.9Recap1695.10Methodological references1705.11Exercises170

	Contents	xi			
Mult	iple linear regression	17.			
6.1	Basic ideas: book weight and brain weight examples	17.			
	6.1.1 Omission of the intercept term	17			
	6.1.2 Diagnostic plots	17			
	6.1.3 Example: brain weight	17			
	6.1.4 Plots that show the contribution of individual terms	18			
6.2	Multiple regression assumptions and diagnostics	18			
	6.2.1 Influential outliers and Cook's distance	18			
	6.2.2 Influence on the regression coefficients	18			
	6.2.3* Additional diagnostic plots	18			
	6.2.4 Robust and resistant methods	18			
	6.2.5 The uses of model diagnostics	18			
6.3	A strategy for fitting multiple regression models	18			
	6.3.1 Preliminaries	18			
	6.3.2 Model fitting	18			
	6.3.3 An example – the Scottish hill race data	18			
6.4	Measures for the assessment and comparison of regression				
	models	19			
	6.4.1 R^2 and adjusted R^2	19			
	6.4.2 AIC and related statistics	19			
	6.4.3 How accurately does the equation predict?	19			
6.5	Interpreting regression coefficients	19			
	6.5.1 Book dimensions and book weight	19			
6.6	Problems with many explanatory variables	19			
	6.6.1 Variable selection issues	20			
6.7	Multicollinearity	20			
	6.7.1 A contrived example	20			
	6.7.2 The variance inflation factor	20			
	6.7.3 Remedies for multicollinearity	20			
6.8	Multiple regression models – additional points	20			
	6.8.1 Errors in x	20			
	6.8.2 Confusion between explanatory and response variables	21			
	6.8.3 Missing explanatory variables	21			
	6.8.4 [*] The use of transformations	21			
	6.8.5* Non-linear methods – an alternative to transformation?	21			
6.9	Recap	21			
6.10	Further reading	21			
	6.10.1 References for further reading	21			
6.11	Exercises	21			
Expl	Exploiting the linear model framework				
7.1	Levels of a factor – using indicator variables	22			
	7.1.1 Example – sugar weight	22			
	7.1.2 Different choices for the model matrix when there are				
	factors	22			

Cambridge University Press
978-0-521-86116-8 - Data Analysis and Graphics Using R - an Example-Based
Approach, Second Edition
John Maindonald and W. John Braun
Frontmatter
More information

xiv		Contents		
	7.2			22.4
	7.2		designs and balanced incomplete block designs	224
		7.2.1	Analysis of the rice data, allowing for block effects	224
	7 2	7.2.2	A balanced incomplete block design	226
	7.3 7.4		g multiple lines	227 231
	7.4	7.4.1	omial regression Issues in the choice of model	231
	7.5*		ds for passing smooth curves through data	233 234
	7.5	7.5.1	Scatterplot smoothing – regression splines	234 235
			Penalized splines and generalized additive models	233 239
		7.5.3	Other smoothing methods	239
	7.6		hing terms in additive models	239 241
	7.0		The fitting of penalized spline terms	241 243
	7.7		er reading	243
	/./	7.7.1	References for further reading	243 243
	7.8	Exerci	-	243 243
	7.0	Елегси	563	243
8	Gene	ralized	linear models and survival analysis	246
	8.1	Gener	alized linear models	246
		8.1.1	Transformation of the expected value on the left	246
		8.1.2	Noise terms need not be normal	247
		8.1.3	Log odds in contingency tables	247
		8.1.4	Logistic regression with a continuous explanatory variable	248
	8.2	Logist	ic multiple regression	251
		8.2.1	Selection of model terms and fitting the model	253
		8.2.2	A plot of contributions of explanatory variables	256
		8.2.3	Cross-validation estimates of predictive accuracy	257
	8.3	Logist	ic models for categorical data – an example	258
	8.4	Poisso	n and quasi-Poisson regression	260
		8.4.1	Data on aberrant crypt foci	260
		8.4.2	Moth habitat example	263
	8.5	Additi	onal notes on generalized linear models	269
		8.5.1*	, E 1	269
		8.5.2	Standard errors and z- or t-statistics for binomial models	270
		8.5.3	Leverage for binomial models	270
	8.6		s with an ordered categorical or categorical response	271
		8.6.1	Ordinal regression models	271
		8.6.2*	Loglinear models	274
	8.7	Surviv	al analysis	275
		8.7.1	Analysis of the Aids2 data	276
		8.7.2	Right censoring prior to the termination of the study	278
		8.7.3	The survival curve for male homosexuals	279
		8.7.4	Hazard rates	279
		8.7.5	The Cox proportional hazards model	280
	8.8		formations for count data	282
	8.9	Furthe	er reading	283

	Contents	Х
	8.9.1 References for further reading	28
8.10	Exercises	28
9 Time	e series models	28
9.1	Time series – some basic ideas	28
	9.1.1 Preliminary graphical explorations	28
	9.1.2 The autocorrelation function	28
	9.1.3 Autoregressive models	28
	9.1.4* Autoregressive moving average models – theory	29
9.2*	Regression modeling with moving average errors	29
<i>9.3</i> *	Non-linear time series	29
9.4	Other time series packages	29
9.5	Further reading	29
	9.5.1 Spatial statistics	29
	9.5.2 References for further reading	29
9.6	Exercises	29
10 Mult	i-level models and repeated measures	3(
10.1	A one-way random effects model	30
	10.1.1 Analysis with aov()	30
	10.1.2 A more formal approach	30
	10.1.3 Analysis using lmer()	30
10.2	Survey data, with clustering	31
	10.2.1 Alternative models	31
	10.2.2 Instructive, though faulty, analyses	31
	10.2.3 Predictive accuracy	31
10.3	A multi-level experimental design	31
	10.3.1 The anova table	31
	10.3.2 Expected values of mean squares	32
	10.3.3 [*] The sums of squares breakdown	32
	10.3.4 The variance components	32
	10.3.5 The mixed model analysis	32
	10.3.6 Predictive accuracy	32
	10.3.7 Different sources of variance – complication or focus	
	of interest?	32
10.4	Within- and between-subject effects	32
	10.4.1 Model selection	32
	10.4.2 Estimates of model parameters	33
10.5	Repeated measures in time	33
	10.5.1 Example – random variation between profiles	33
	10.5.2 Orthodontic measurements on children	33
10.6	Error structure considerations	34
	10.6.1 Predictions from models with a complex error	
	structure	34
	10.6.2 Error structure in explanatory variables	34

Cambridge University Press	
78-0-521-86116-8 - Data Analysis and Graphics Using R - an Example-Based	
Approach, Second Edition	
ohn Maindonald and W. John Braun	
Frontmatter	
Aore information	

xvi	Contents					
	10.7	Further notes on multi-level and other models with correlated	244			
		errors	344			
		10.7.1 An historical perspective on multi-level models	344			
		10.7.2 Meta-analysis	346			
	10.0	10.7.3 Functional data analysis	346			
	10.8 10.9	Recap Further reading	346 347			
	10.9	10.9.1 References for further reading	347 347			
	10.10	Exercises	347 348			
	10.10		210			
11	Tree-h	based classification and regression	350			
	11.1	The uses of tree-based methods	351			
		11.1.1 Problems for which tree-based regression may be used	351			
	11.2	Detecting email spam – an example	352			
		11.2.1 Choosing the number of splits	355			
	11.3	Terminology and methodology	355			
		11.3.1 Choosing the split – regression trees	355			
		11.3.2 Within and between sums of squares	356			
		11.3.3 Choosing the split – classification trees	357			
		11.3.4 Tree-based regression versus loess regression smoothing	358			
	11.4	Predictive accuracy and the cost-complexity tradeoff	360			
		11.4.1 Cross-validation	361			
		11.4.2 The cost–complexity parameter	361			
		11.4.3 Prediction error versus tree size	362			
	11.5	Data for female heart attack patients	363			
		11.5.1 The one-standard-deviation rule	365			
		11.5.2 Printed information on each split	365			
	11.6	Detecting email spam – the optimal tree	366			
	11.7	The randomForest package	368			
	11.8	Additional notes on tree-based methods	371			
		11.8.1 The combining of tree-based methods with other approaches	371			
		11.8.2 Models with a complex error structure	372			
		11.8.3 Pruning as variable selection	372			
		11.8.4 Other types of tree11.8.5 Factors as predictors	372			
			372 372			
	11.9	11.8.6 Summary of pluses and minuses of tree-based methods <i>Further reading</i>	373			
	11.9	11.9.1 References for further reading	373			
	11.10	Exercises	374			
12	Multiv	variate data exploration and discrimination	375			
	12.1	Multivariate exploratory data analysis	376			
		12.1.1 Scatterplot matrices	376			
		12.1.2 Principal components analysis	377			
		12.1.3 Multi-dimensional scaling	383			

			Contents	xvii
	12.2	Discrin	ninant analysis	384
		12.2.1	-	384
		12.2.2		386
		12.2.3	Linear discriminant analysis	387
		12.2.4	An example with more than two groups	388
	12.3*	High-d	imensional data, classification and plots	390
		12.3.1	Classifications and associated graphs	392
		12.3.2		393
		12.3.3	Accuracies and scores for test data	397
		12.3.4	Graphs derived from the cross-validation process	403
	12.4	Further	r reading	405
		12.4.1	References for further reading	406
	12.5	Exercis	ses	406
13	Regression on principal component or discriminant scores			408
	13.1		al component scores in regression	408
	13.2*	-	sity scores in regression comparisons – labor	
		trainin	g data	412
		13.2.1	Regression analysis, using all covariates	415
		13.2.2	The use of propensity scores	417
	13.3	Further	r reading	419
		13.3.1	References for further reading	419
	13.4	Exercis	ses	420
14	The R system – additional topics			421
	14.1	14.1 Working directories, workspaces and the search list		
		14.1.1*	The search path	421
		14.1.2	Workspace management	421
		14.1.3	Utility functions	423
	14.2	14.2 Data input and output		
		14.2.1	Input of data	424
		14.2.2	Data output	428
	14.3	Functio	ons and operators – some further details	429
		14.3.1	Function arguments	430
		14.3.2	Character string and vector functions	431
		14.3.3	Anonymous functions	431
		14.3.4	Functions for working with dates (and times)	432
		14.3.5	Creating groups	433
		14.3.6	Logical operators	434
	14.4	Factors	S	434
	14.5	Missing values		437
	14.6*	Matrices and arrays		439
		14.6.1	Matrix arithmetic	440
		14.6.2	Outer products	441
		14.6.3	Arrays	442

xviii

Cambridge University Press 978-0-521-86116-8 - Data Analysis and Graphics Using R - an Example-Based Approach, Second Edition John Maindonald and W. John Braun Frontmatter More information

> 14.7 Manipulations with lists, data frames and matrices 443 14.7.1 Lists - an extension of the notion of "vector" 443 14.7.2 Changing the shape of data frames 445 14.7.3* Merging data frames – merge() 445 14.7.4 Joining data frames, matrices and vectors – cbind() 446 14.7.5 The apply family of functions 446 14.7.6 Splitting vectors and data frames into lists – split() 448 14.7.7 Multivariate time series 448 14.8 Classes and methods 449 14.8.1 Printing and summarizing model objects 449 14.8.2 Extracting information from model objects 450 14.8.3 S4 classes and methods 450 14.9 Manipulation of language constructs 451 14.9.1 Model and graphics formulae 451 14.9.2 The use of a list to pass parameter values 452 14.9.3 Expressions 453 14.9.4 Environments 453 14.9.5 Function environments and lazy evaluation 455 14.10 *Document preparation* — Sweave() 456 14.11 Graphs in R 457 14.11.1 Hardcopy graphics devices 457 14.11.2 Multiple graphs on a single graphics page 457 Plotting characters, symbols, line types and colors 14.11.3 457 14.12 Lattice graphics and the grid package 462 Interaction with plots 14.12.1 464 14.12.2* Use of grid.text() to label points 464 14.12.3* Multiple lattice graphs on a graphics page 465 14.13 Further reading 466 466 14.13.1 Vignettes 14.13.2 References for further reading 466 14.14 Exercises 467 **Epilogue – models** 470 References 474 **Index of R Symbols and Functions** 485 **Index of Terms** 491 **Index of Authors** 501 **Color Plates after Page 502**

Contents

Preface

This book is an exposition of statistical methodology that focuses on ideas and concepts, and makes extensive use of graphical presentation. It avoids, as much as possible, the use of mathematical symbolism. It is particularly aimed at scientists who wish to do statistical analyses on their own data, preferably with reference as necessary to professional statistical advice. It is intended to complement more mathematically oriented accounts of statistical methodology. It may be used to give students with a more specialist statistical interest exposure to practical data analysis.

While no prior knowledge of specific statistical methods or theory is assumed, there is a demand that readers bring with them, or quickly acquire, some modest level of statistical sophistication. Readers should have some prior exposure to statistical methodology, some prior experience of working with real data, and be comfortable with the typing of analysis commands into the computer console. Some prior familiarity with regression and with analysis of variance will be helpful.

We cover a range of topics that are important for many different areas of statistical application. As is inevitable in a book that has this broad focus, there will be investigators working in specific areas – perhaps epidemiology, or psychology, or sociology, or ecology – who will regret the omission of some methodologies that they find important.

We comment extensively on analysis results, noting inferences that seem well-founded, and noting limitations on inferences that can be drawn. We emphasize the use of graphs for gaining insight into data – in advance of any formal analysis, for understanding the analysis, and for presenting analysis results.

The data sets that we use as a vehicle for demonstrating statistical methodology have been generated by researchers in many different fields, and have in many cases featured in published papers. As far as possible, our account of statistical methodology comes from the coalface, where the quirks of real data must be faced and addressed. Features that may challenge the novice data analyst have been retained. The diversity of examples has benefits, even for those whose interest is in a specific application area. Ideas and applications that are useful in one area often find use elsewhere, even to the extent of stimulating new lines of investigation. We hope that our book will stimulate such cross-fertilization.

To summarize: the strengths of this book include the directness of its encounter with research data, its advice on practical data analysis issues, the inclusion of code that reproduces analyses, careful critiques of analysis results, attention to graphical and other

Cambridge University Press 978-0-521-86116-8 - Data Analysis and Graphics Using R - an Example-Based Approach, Second Edition John Maindonald and W. John Braun Frontmatter <u>More information</u>

XX

Preface

presentation issues, and the use of examples drawn from across the range of statistical applications.

John Braun wrote the initial drafts of Subsections 4.7.3, 4.7.4, 5.5.3, 6.8.5, 8.4.1 and Section 9.3. Initial drafts of remaining material were, mostly, from John Maindonald's hand. A substantial part was derived, initially, from the lecture notes of courses for researchers, at the University of Newcastle (Australia) over 1996–1997 and at The Australian National University over 1998–2001. Both of us have worked extensively over the material in these chapters. John Braun has taken primary responsibility for maintenance of the *DAAG* package.

The R system

We use the R system for the computations. The R system implements a dialect of the influential S language, developed at AT&T Bell Laboratories by Rick Becker, John Chambers and Allan Wilks, which is the basis for the commercial S-PLUS system. It follows S in its close linkage between data analysis and graphics. Versions of R are available, at no charge, for 32-bit versions of Microsoft Windows, for Linux and other Unix systems, and for the Macintosh. It is available through the Comprehensive R Archive Network (CRAN). Go to http://cran.r-project.org/, and find the nearest mirror site.

The development model used for R has proved highly effective in marshalling high levels of computing expertise for continuing improvement, for identifying and fixing bugs, and for responding quickly to the evolving needs and interests of the statistical community. Oversight of "base R" is handled by the R Core Team, whose members are widely drawn internationally. Use is made of code, bug fixes and documentation from the wider R user community. Especially important are the large number of packages that supplement base R, and that anyone is free to contribute. Once installed, these attach seamlessly into the base system.

Many of the analyses offered by R's packages were not, 10 years ago, available in any of the standard statistical packages. What did data analysts do before we had such packages? Basically, they adapted more simplistic (but not necessarily simpler) analyses as best they could. Those whose skills were unequal to the task did unsatisfactory analyses. Those with more adequate skills carried out analyses that, even if not elegant and insightful by current standards, were often adequate. Tools such as are available in R have reduced the need for the adaptations that were formerly necessary. We can often do analyses that better reflect the underlying science. There have been challenging and exciting changes from the methodology that was typically encountered in statistics courses 10 or 15 years ago.

In the ongoing development of R, priorities have been: the provision of good data manipulation abilities; flexible and high-quality graphics; the provision of data analysis methods that are both insightful and adequate for the whole range of application area demands; seamless integration of the different components of R; and the provision of interfaces to other systems (editors, databases, the web, etc.) that R users may require.

Preface

xxi

Ease of use is important, but not at the expense of power, flexibility and checks against answers that are potentially misleading.

Depending on the user's level of skill with R, there will be some relatively routine tasks where another system may seem simpler to use. Note however the availability of interfaces, notably John Fox's *Rcmdr*, that give a graphical user interface (GUI) to a limited part of R. Such interfaces will develop and improve as time progresses. They may in due course, for many users, be the preferred means of access to R. Be aware that the demand for simple tools will commonly place limitations on the tasks that can, without professional assistance, be satisfactorily undertaken.

Primarily, R is designed for scientific computing and for graphics. Among the packages that have been added are many that are not obviously statistical – for drawing and coloring maps, for map projections, for plotting data collected by balloon-born weather instruments, for creating color palettes, for working with bitmap images, for solving sudoko puzzles, for creating magic squares, for reading and handling shapefiles, for solving ordinary differential equations, for processing various types of genomic data, and so on. Check through the list of R packages that can be found on any of the CRAN sites, and you may be surprised at what you find!

The citation for John Chambers' 1998 Association for Computing Machinery Software award stated that S has "forever altered how people analyze, visualize and manipulate data." The R project enlarges on the ideas and insights that generated the S language. We are grateful to the R Core Team, and to the creators of the various R packages, for bringing into being the R system – this marvellous tool for scientific and statistical computing, and for graphical presentation. We list at the end of the reference section the authors and compilers of packages that have been used in this book.

Influences on the modern practice of statistics

The development of statistics has been motivated by the demands of scientists for a methodology that will extract patterns from their data. The methodology has developed in a synergy with the relevant supporting mathematical theory and, more recently, with computing. This has led to methodologies and supporting theory that are a radical departure from the methodologies of the pre-computer era.

Statistics is a young discipline. Only in the 1920s and 1930s did the modern framework of statistical theory, including ideas of hypothesis testing and estimation, begin to take shape. Different areas of statistical application have taken these ideas up in different ways, some of them starting their own separate streams of statistical tradition. Gigerenzer *et al.* (1989, "The Empire of Statistics") examine the history, commenting on the different streams of development that have influenced practice in different research areas.

Separation from the statistical mainstream, and an emphasis on "black box" approaches, have contributed to a widespread exaggerated emphasis on tests of hypotheses, to a neglect of pattern, to the policy of some journal editors of publishing only those studies that show a statistically significant effect, and to an undue focus on the individual study. Anyone

xxii

Preface

who joins the R community can expect to witness, and/or engage in, lively debate that addresses these and related issues. Such debate can help ensure that the demands of scientific rationality do in due course win out over influences from accidents of historical development.

New tools for effective data analysis

We have drawn attention to advances in statistical computing methodology. These have led to new powerful tools for exploratory analysis of regression data, for choosing between alternative models, for diagnostic checks, for handling non-linearity, for assessing the predictive power of models, and for graphical presentation. In addition, we have new computing tools that make it straightforward to move data between different systems, to keep a record of calculations, to retrace or adapt earlier calculations, and to edit output and graphics into a form that can be incorporated into published documents.

The best any analysis can do is to highlight the information in the data. No amount of statistical or computing technology can be a substitute for good design of data collection, for understanding the context in which data are to be interpreted, or for skill in the use of statistical analysis methodology. Statistical software systems are one of several components of effective data analysis.

The questions that statistical analysis is designed to answer can often be stated simply. This may encourage the layperson to believe that the answers are similarly simple. Often, they are not. Be prepared for unexpected subtleties. Effective statistical analysis requires appropriate skills, beyond those gained from taking one or two undergraduate courses in statistics. There is no good substitute for professional training in modern tools for data analysis, and experience in using those tools with a wide range of data sets. No-one should be embarrassed that they have difficulty with analyses that involve ideas that professional statisticians may take 7 or 8 years of professional training and experience to master.

Changes in this second edition

This new edition takes account of changes in R since 2003. There is new material on survival analysis, random coefficient models and the handling of high-dimensional data. The treatment of regression methods has been extended, including in particular a brief discussion of errors in predictor variables. Both the text and R code have been extensively revised. Code has, wherever possible, been simplified. Some examples have been reworked. There are changes to some graphs, and new graphs have been added.

Acknowledgments

Many different people have helped us with this project. Winfried Theis (University of Dortmund, Germany) and Detlef Steuer (University of the Federal Armed Forces, Hamburg, Germany) helped with technical aspects of working with LATEX, with setting up a cvs server to manage the LATEX files, and with helpful comments. Lynne Billard

Preface

xxiii

(University of Georgia, USA), Murray Jorgensen (University of Waikato, NZ) and Berwin Turlach (University of Western Australia) gave valuable help in the identification of errors and text that required clarification. Susan Wilson (Australian National University) gave welcome encouragement. Duncan Murdoch (University of Western Ontario) helped set up the *DAAG* package, and has supplied valuable technical advice. Thanks also to Cath Lawrence (Australian National University) for her Python program that allowed us to extract the R code, as and when required, from our Larex files; this has now at length become an R function. Many of the tables in this book were generated, in first draft form, using the xtable() function from the *xtable* package for R.

For this second edition, Brian Ripley (University of Oxford) has gone through the manuscript and made extensive comments, leading to important corrections and improvements. We are most grateful to him, and to others who have commented on the manuscript. Alan Welsh (Australian National University) has been helpful in working through points where it has seemed difficult to get the emphasis right. Once again, Duncan Murdoch has given much useful technical advice. Others who have made helpful comments and/or pointed out errors include Jeff Wood (Australian National University), Nader Tajvidi (University of Lund), Paul Murrell (University of Auckland, on Section 14.11), Graham Williams (http://www.togaware.com, on Chapter 1) and Yang Yang (University of Western Ontario, on Chapter 10). The failings that remain are, naturally, our responsibility.

A strength of this book is the extent to which it has drawn on data from many different sources. We give a list, following the list of references for the data near the end of the book, of individuals and/or organizations to whom we are grateful for allowing use of data. We are grateful to those who have allowed us to use their data. At least these data will not, as often happens once data have become the basis for a published paper, gather dust in a long-forgotten folder! We are grateful, also, to the many researchers who, in their discussions with us, have helped stimulate our thinking and understanding. We apologize if there is anyone that we have inadvertently failed to acknowledge.

Diana Gillooly of Cambridge University Press, taking over from David Tranah for this new edition, has been a marvellous source of advice and encouragement throughout the revision process.

Conventions

Text that is R code, or output from R, is printed in a verbatim text style. For example, in Chapter 1 we will enter data into an R object that we call austpop. We will use the plot () function to plot these data. The names of R packages, including our own *DAAG* package, are printed in italics.

Starred exercises and sections identify more technical items that can be skipped at a first reading.

Solutions to exercises

Solutions to selected exercises, R scripts that have all the code from the book and other supplementary materials are available via the link given at http://www.maths.anu.edu.au/~johnm/r-book