Magnetic fields permeate space and affect many major astrophysical phenomena, but they are often ignored due to their perceived complexity. This self-contained introduction to astrophysical magnetic fields provides both a comprehensive review of the current state of the subject and a critical discussion of the latest research. It presents our knowledge of magnetic fields from the Early Universe, their evolution in cosmic time through to their roles in present-day galaxies, galaxy clusters and the wider intergalactic medium, with attention given to both theory and observations. This volume also contains an extensive introduction into magnetohydrodynamics, numerous worked examples, observational and mathematical techniques and interpretations of the observations. Its review of our current knowledge, with an emphasis on results that are likely to form the basis for future progress, benefits a broad audience of advanced students and active researchers, including those from fields such as cosmology and general relativity.

Anvar Shukurov is Professor of Astrophysical Fluid Dynamics at Newcastle University, UK. He co-authored Magnetic Fields of Galaxies, a book that has largely defined the subject. He is a Fellow of the Royal Astronomical Society and a member of the London Mathematical Society and International Astronomical Union.

Kandaswamy Subramanian is a Distinguished Professor at IUCAA, Pune. His research encompasses a wide spectrum of astrophysics, including impactful work on cosmic magnetism. He has received the B. M. Birla Science Prize for Physics, and is a Fellow of the Indian Academy of Sciences and the Indian National Science Academy.
CAMBRIDGE ASTROPHYSICS SERIES

Series editors:
Andrew King, Douglas Lin, Stephen Maran, Jim Pringle, Martin Ward and Robert Kennicutt

Titles available in the series

29. The Magellanic Clouds
 by Bengt E. Westerlund

30. Globular Cluster Systems
 by Keith M. Ashman and Stephen E. Zepf

33. The Origin and Evolution of Planetary Nebulae
 by Sun Kwok

34. Solar and Stellar Magnetic Activity
 by Carolus J. Schrijver and Cornelis Zwaan

35. The Galaxies of the Local Group
 by Sidney van den Bergh

36. Stellar Rotation
 by Jean-Louis Tassoul

37. Extreme Ultraviolet Astronomy
 by Martin A. Barstow and Jay B. Holberg

39. Compact Stellar X-ray Sources
 edited by Walter H. G. Lewin and Michiel van der Klis

40. Evolutionary Processes in Binary and Multiple Stars
 by Peter Eggleton

41. The Physics of the Cosmic Microwave Background
 by Pavel D. Naselsky, Dmitry I. Novikov and Igor D. Novikov

42. Molecular Collisions in the Interstellar Medium, 2nd Edition
 by David Flower

43. Classical Novae, 2nd Edition
 edited by M. F. Bode and A. Evans

44. Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere
 by Kenneth J. H. Phillips, Uri Feldman and Enrico Landi

45. From Luminous Hot Stars to Starburst Galaxies
 by Peter S. Conti, Paul A. Crowther and Claus Leitherer

46. Sunspots and Starspots
 by John H. Thomas and Nigel O. Weiss

47. Accretion Processes in Star Formation, 2nd Edition
 by Lee Hartmann

 by Andrew Lyne and Francis Graham-Smith

49. Astrophysical Jets and Beams
 by Michael D. Smith

50. Maser Sources in Astrophysics
 by Malcolm Gray

51. Gamma-ray Bursts
 edited by Chryssa Kouveliotou, Ralph A. M. J. Wijers and Stan Woosley

52. Physics and Chemistry of Circumstellar Dust Shells
 by Hans-Peter Gail and Erwin Seldneymayr

53. Cosmic Magnetic Fields
 by Philipp P. Kronberg

54. The Impact of Binary Stars on Stellar Evolution
 by Giacomo Beccari and Henri M. J. Boffin

55. Star-Formation Rates of Galaxies
 edited by Andreas Zezas and Véronique Buat

56. Astrophysical Magnetic Fields: From Galaxies to the Early Universe
 by Anvar Shukurov and Kandaswamy Subramanian
ASTROPHYSICAL MAGNETIC FIELDS
From Galaxies to the Early Universe

ANVAR SHUKUROV
Newcastle University, UK

KANDASWAMY SUBRAMANIAN
Inter-University Centre for Astronomy and Astrophysics, Pune, India
Contents

Preface

1 Introduction xi

2 Elements of Magnetohydrodynamics

2.1 The Induction Equation 5

2.2 The Momentum Equation 14

2.3 Vorticity 17

2.4 Energy Conservation 20

2.5 Magnetic Helicity 21

2.6 Dissipation in Space Plasmas 26

2.7 Magnetohydrodynamic Waves 40

2.8 Instabilities Mediated by Magnetic Fields 41

2.9 Magnetic Reconnection 49

2.10 Turbulent Flows 53

3 Observational Signatures of Magnetic Fields 68

3.1 Synchrotron Radiation 68

3.2 Polarization and the Stokes Parameters 79

3.3 Describing Polarization over the Whole Sky 82

3.4 Intrinsic Polarization of Synchrotron Emission 86

3.5 Radio Spectra 87

3.6 Synchrotron Intensity and Propagation Effects 94

3.7 The Radio Sky 98

3.8 Faraday Rotation 101

3.9 Light Polarization by Dust 104

3.10 Zeeman Splitting of Spectral Lines 115

4 Polarization and Depolarization 121

4.1 The Complex Linear Polarization 121

4.2 Differential Faraday Rotation 124
Contents

4.3 Polarization in a Random Magnetic Field 128
4.4 Wavelength-Independent Depolarization 132
4.5 Equipartition between a Magnetic Field and Cosmic Rays 137
4.6 Internal Faraday Dispersion 138
4.7 Depolarization Mechanisms Combined 142
4.8 Faraday Screens 145
4.9 RM Gradient across the Beam 148
4.10 Anomalous Depolarization in a Helical Magnetic Field 152
4.11 Small Filling Factors 155
4.12 Bandwidth Depolarization 155
4.13 The Faraday Structure of a Radio Source 156

5 The Concept of Hydromagnetic Dynamo 160
5.1 Anti-dynamo Theorems 162
5.2 Fast Dynamos 166
5.3 Turbulent Dynamos 169

6 The Fluctuation Dynamo 171
6.1 Kinematic Dynamo 172
6.2 Fluctuation Dynamo in Multi-scale Flows 180
6.3 Fluctuation Dynamo in Compressible Flows 182
6.4 Magnetic Field Statistics and Intermittency 183
6.5 Magnetic Structures in the Fluctuation Dynamo 185
6.6 Non-linear Effects 191
6.7 Fluctuation Dynamos in Silico 197
6.8 Reconnecting Flux Rope Dynamo 200

7 The Mean-Field Dynamo 207
7.1 Elementary Dynamo Theory 207
7.2 Averaging Procedures 211
7.3 The Mean-Field Induction Equation and Electromotive Force 218
7.4 Kinematic Mean-Field Dynamo 218
7.5 The First-Order Smoothing Approximation (FOSA) 220
7.6 δ-Correlated Velocity Fields 223
7.7 Renovating Random Flows 224
7.8 Operator Splitting for a Renovating Flow 230
7.9 Turbulent Diamagnetism 232
7.10 Other Mean-Field Dynamo Effects 234
7.11 Non-linear Mean-Field Dynamos 235
7.12 Magnetic Helicity in the Mean-Field Theory 240
7.13 Magnetic Helicity Density of a Random Field 245
Contents

7.14 The Dynamic Saturation of Mean-Field Dynamos 250
7.15 Turbulent Transport Coefficients from Numerical Simulations 250
7.16 Simulations of Interstellar Magnetic Fields 255

8 The Fluctuation and Mean-Field Dynamos Unified 259
8.1 Kinematic Dynamos 260
8.2 The Magnetic Helicity Constraint 263
8.3 Non-linear Dynamo Competition 265

9 Seed Magnetic Fields 268
9.1 Baroclinic Batteries 268
9.2 Plasma Interaction with Radiation 271
9.3 Plasma Instabilities 271
9.4 Magnetic Fields Ejected from Stars and Active Galactic Nuclei 272
9.5 Large-Scale Seed Magnetic Fields from Small Scales 273

10 Interstellar and Intergalactic Medium 275
10.1 Spiral Galaxies 275
10.2 Coronae of Spiral Galaxies 289
10.3 Cosmic Rays 301
10.4 Elliptical Galaxies 305
10.5 Intergalactic and Cosmological Plasmas 309

11 Kinematic Dynamos in Galaxies 316
11.1 Boundary Conditions 319
11.2 Dynamo Control Parameters 319
11.3 Field Distribution across the Disc 321
11.4 Radial Distribution of an Axisymmetric Magnetic Field 332
11.5 Turbulent Diamagnetism in Galaxies 338
11.6 Propagating Magnetic Fronts 339
11.7 Spherical Mean-Field Dynamos 341
11.8 Non-axisymmetric Magnetic Fields in a Thin Disc 349
11.9 Accretion and Dynamo Action 355

12 Non-linear Mean-Field Galactic Dynamos 358
12.1 Dynamic and Quasi-kinematic Non-linearities 358
12.2 Non-linear States of Thin-Disc Dynamos 359
12.3 Magnetic Helicity Balance and Dynamic Non-linearity 361
12.4 Dynamos Driven by Magnetic Buoyancy 365
12.5 Other Non-linear Effects 370
12.6 Disc Dynamos in an External Magnetic Field 370
Contents

13 Theory and Observations Put Together
 13.1 Observational Evidence for the Origin of Galactic Magnetic Fields
 13.2 Magnetic Field Strength
 13.3 Random Magnetic Fields
 13.4 Ingredients of a Galactic Mean-Field Dynamo Model
 13.5 Geometry of the Large-Scale Magnetic Field
 13.6 Symmetries of Galactic Magnetic Fields
 13.7 Strength of the Mean Magnetic Field
 13.8 Radial Structure and Magnetic Reversals
 13.9 Magnetic Fields and the ISM Structure
 13.10 Magnetic Fields and the Spiral Pattern
 13.11 Magnetic Fields in Galactic Coronae
 13.12 Dwarf and Irregular Galaxies
 13.13 Elliptical Galaxies
 13.14 Magnetic Fields and Galaxy Formation

14 Magnetohydrodynamics of Galaxy Clusters
 14.1 Observations of Magnetic Fields in Galaxy Clusters
 14.2 Origin of the Cluster Magnetism
 14.3 Intracluster Turbulence
 14.4 The Fluctuation Dynamo in the Intracluster Gas
 14.5 Faraday Rotation in Galaxy Clusters
 14.6 Polarized Synchrotron Emission from Cluster Radio Haloes
 14.7 Plasma Dynamos and Galaxy Clusters

15 Magnetic Fields in the Early Universe
 15.1 Introduction and Overview
 15.2 Cosmology and the Early Universe
 15.3 Electrodynamics in a Curved Space–Time
 15.4 The Primordial Magnetogenesis
 15.5 Evolution of Primordial Magnetic Fields in the Linear Regime
 15.6 Non-linear Evolution of Primordial Fields

16 Signatures of Primordial Magnetic Fields
 16.1 Cosmic Microwave Background Signals
 16.2 Primordial Magnetic Fields after the Recombination
 16.3 Constraints from Faraday Rotation Observations
 16.4 Constraints from γ-Ray Observations
Contents

16.5 Primordial Magnetic Fields and Turbulent Dynamos 546

References 548

Index 611
Preface

This is a book on the astrophysics of magnetic fields on galactic and extragalactic scales, on their origin, structure and evolution with cosmic time. When discussing magnetic fields and their significance, we emphasize the physical foundations attempting to present a coherent, unified picture of the astronomical objects and processes. Astrophysics is an observational science. Therefore, we present the theoretical picture within a rich framework of observational information: this picture cannot exist without its frame. When discussing the observations, we try to put them, again, on a firm physical ground presenting observational results in a physical context rather than as isolated facts. The theoretical picture and its observational framework thus merge and become inseparable. We make an effort to present observations in a form understandable to theoreticians while discussing theory in a form suitable for observers. This is a difficult task, and our success can only be judged by the reader.

We believe that now is the right time to write a new book on the subject. Both observations and theory have made very substantial progress since the earlier book on a similar subject (Ruzmaikin et al., 1988b). These new results need to be summarized, generalized, unified, and put into the general physical context in a manner only a self-contained book can do. This book attempts to do just that.

With this attitude in mind, we felt it necessary to introduce the physical background of magnetohydrodynamics (MHD), elements of plasma physics, some of cosmic-ray dynamics, theory of synchrotron radiation, general relativity and cosmology. As a consequence, some parts of the book balance on a narrow borderline between a textbook and a research monograph. The result is reasonably self-contained but the length of the text has unavoidably increased. We are neither the first nor the last to admit this problem (‘I am sorry this letter is so long; I did not have time to make it shorter’ – Blaise Pascal), but we have made an effort to make it as short as practical. Many readers will find that they can skip the basics and read sections and chapters on current research, where we present the latest results and try to anticipate future developments.
The parts of the text that summarize the necessary background may be useful as an introduction to advanced textbooks, they may also help to consolidate any existing knowledge. Throughout the text, mathematical derivations and physical arguments are supplied with sufficient detail as to allow the reader to reproduce them without excessive effort. We have been systematically replacing phrases like ‘it can easily be shown’, which are numerous in the first draft, with details of the calculations. Many examples and calculations can be converted into problems and projects for an advanced undergraduate or postgraduate course on astrophysical magnetohydrodynamics.

Our exposition is unified by the common basis of the general physical theory of magnetic fields in a moving, electrically conducting medium, especially in turbulent flows. We treat magnetic fields in a broad variety of astrophysical objects within a coherent physical and mathematical framework with the dynamo theory as its cornerstone. The discussion also extends further to processes in the Early Universe. Our goal is to provide a logical and, as far as possible, reasonably complete picture of the origin, evolution, observed properties and physical effects associated with magnetic fields in a range of astrophysical objects from galactic to cosmological scales. We do not discuss the magnetic fields of stars and planets because the physical processes involved are somewhat different. However, the significance and applicability of the general dynamo paradigm developed here extend to radio galaxies, active galactic nuclei, stars, accretion discs and planets.

A reader interested in just one type of object (say, elliptical galaxies) would not need to read the whole book. We have structured the text with such a reader in mind. The book consists of a few core chapters where the basic physical ideas and mathematical techniques are introduced (at both heuristic and more formal levels), and several themes are threaded throughout the whole text which causes unavoidable repetition justified by our attempt to make some parts of the text as self-contained as practical. Various parts of the text contain models and results which were not published before as they developed in the process of writing this book.

We dedicate this book to our extended families. The intellectual accomplishments of the previous two generations were our lifelong inspiration, and the daily support, patience and encouragement of the next two generations have made our work possible. We were fortunate to have an opportunity to learn from Shashikumar Chitre, Jayant Narlikar and Yakov Borisovich Zeldovich from the early stages of our academic lives; their wisdom and depth remain our guiding light. We are grateful to John Barrow, Rainer Beck, Elly Berkhuijsen, Axel Brandenburg, Leon Mestel, Rajaram Nityananda, Jeremiah Ostriker, Martin Rees, Alexander Ruzmaikin, Dmitry Sokoloff, Ethan Vishniac, Richard Wielebinski and many others who have deeply influenced our thoughts and opinions. It is our pleasure to
thank our collaborators and colleagues who were a rich source of ideas and inspiration, including Andrew Baggaley, Aritra Basu, Abhijit Bendre, Pallavi Bhat, Dipankar Bhattacharya, Eric Blackman, Luke Chamandy, Arnab Rai Choudhuri, Ralf-Jürgen Dettmar, Torsten Enßlin, Andrew Fletcher, Peter Frick, Fred Gent, Kishore Gopalakrishnan, Christopher M. Harrison, Tess Jaffe, Charles Jose, Maarit Käpylä (nee Korpi), Beverley Linsley, Irina Makarenko, Nikolay Makarenko, David Moss, T. Padmanabhan, Luiz Felippe S. Rodrigues, Saumyadip Samui, Graeme Sarson, T. R. Seshadri, Amit Seta, Shiv Sethi, Ramkishor Sharma, Nishant Singh, Andrew Snodin, Andrew Soward, R. Srianand, S. Sridhar, Rodion Stepanov, Sharanya Sur, Devika Tharakkal, Pranjal Trivedi and S. Louise Wilkin. Some of them kindly read parts of the text and suggested important changes. Andrew Baggaley, Aritra Basu, Abhijit Bendre, Prasanta Bera, Pallavi Bhat, Axel Brandenburg, Luigina Feretti, Andrew Fletcher, Fred Gent, Marita Krause, Irina Makarenko, Mathieu Remazeilles, L. F. S. Rodrigues, Amit Seta, Shiv Sethi and Richard Shaw provided the data for or redrew several figures, some based on models modified according to our request. We thankfully acknowledge the help of Dipankar Bhattacharya, whose informal tutorials on the PostScript language have allowed us to adapt many figures to a common standard. The generous hospitality of IUCAA and Newcastle University has provided us with numerous opportunities to frequently argue – and always agree – in person. This book would have never been finished without the unfaltering patience and support of the staff at Cambridge University Press, in particular Vince Higgs.