ASTROPHYSICAL MAGNETIC FIELDS

Magnetic fields permeate space and affect many major astrophysical phenomena, but they are often ignored due to their perceived complexity. This self-contained introduction to astrophysical magnetic fields provides both a comprehensive review of the current state of the subject and a critical discussion of the latest research. It presents our knowledge of magnetic fields from the Early Universe, their evolution in cosmic time through to their roles in present-day galaxies, galaxy clusters and the wider intergalactic medium, with attention given to both theory and observations. This volume also contains an extensive introduction into magnetohydrodynamics, numerous worked examples, observational and mathematical techniques and interpretations of the observations. Its review of our current knowledge, with an emphasis on results that are likely to form the basis for future progress, benefits a broad audience of advanced students and active researchers, including those from fields such as cosmology and general relativity.

ANVAR SHUKUROV is Professor of Astrophysical Fluid Dynamics at Newcastle University, UK. He co-authored *Magnetic Fields of Galaxies*, a book that has largely defined the subject. He is a Fellow of the Royal Astronomical Society and a member of the London Mathematical Society and International Astronomical Union.

KANDASWAMY SUBRAMANIAN is a Distinguished Professor at IUCAA, Pune. His research encompasses a wide spectrum of astrophysics, including impactful work on cosmic magnetism. He has received the B. M. Birla Science Prize for Physics, and is a Fellow of the Indian Academy of Sciences and the Indian National Science Academy.

CAMBRIDGE ASTROPHYSICS SERIES

Series editors:

Andrew King, Douglas Lin, Stephen Maran, Jim Pringle, Martin Ward and Robert Kennicutt

Titles available in the series

29. The Magellanic Clouds by Bengt E.Westerlund 30. Globular Cluster Systems by Keith M. Ashman and Stephen E. Zepf 33. The Origin and Evolution of Planetary Nebulae by Sun Kwok 34. Solar and Stellar Magnetic Activity by Carolus J. Schriiver and Cornelis Zwaan 35. The Galaxies of the Local Group by Sidney van den Bergh 36. Stellar Rotation by Jean-Louis Tassoul 37. Extreme Ultraviolet Astronomy by Martin A. Barstow and Jay B. Holberg 39. Compact Stellar X-ray Sources edited by Walter H. G. Lewin and Michiel van der Klis 40. Evolutionary Processes in Binary and Multiple Stars by Peter Eggleton 41. The Physics of the Cosmic Microwave Background by Pavel D. Naselsky, Dmitry I. Novikov and Igor D. Novikov 42. Molecular Collisions in the Interstellar Medium, 2nd Edition by David Flower 43. Classical Novae, 2nd Edition edited by M. F. Bode and A. Evans 44. Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere by Kenneth J. H. Phillips, Uri Feldman and Enrico Landi 45 From Luminous Hot Stars to Starburst Galaxies by Peter S. Conti, Paul A. Crowther and Claus Leitherer 46. Sunspots and Starspots by John H. Thomas and Nigel O. Weiss 47. Accretion Processes in Star Formation, 2nd Edition by Lee Hartmann 48. Pulsar Astronomy, 4th Edition by Andrew Lyne and Francis Graham-Smith 49. Astrophysical Jets and Beams by Michael D. Smith 50. Maser Sources in Astrophysics by Malcolm Gray 51. Gamma-ray Bursts edited by Chryssa Kouveliotou, Ralph A. M. J. Wijers and Stan Woosley 52. Physics and Chemistry of Circumstellar Dust Shells by Hans-Peter Gail and Erwin Sedlmayr 53. Cosmic Magnetic Fields by Philipp P. Kronberg 54. The Impact of Binary Stars on Stellar Evolution by Giacomo Beccari and Henri M. J. Boffin 55. Star-Formation Rates of Galaxies edited by Andreas Zezas and Véronique Buat 56. Astrophysical Magnetic Fields: From Galaxies to the Early Universe by Anvar Shukurov and Kandaswamy Subramanian

Cambridge University Press 978-0-521-86105-2 — Astrophysical Magnetic Fields Anvar Shukurov , Kandaswamy Subramanian Frontmatter <u>More Information</u>

ASTROPHYSICAL MAGNETIC FIELDS

From Galaxies to the Early Universe

ANVAR SHUKUROV

Newcastle University, UK

KANDASWAMY SUBRAMANIAN

Inter-University Centre for Astronomy and Astrophysics, Pune, India

Cambridge University Press 978-0-521-86105-2 — Astrophysical Magnetic Fields Anvar Shukurov, Kandaswamy Subramanian Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521861052 DOI: 10.1017/9781139046657

© Anvar Shukurov and Kandaswamy Subramanian 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-0-521-86105-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface		xi	
1	Intro	luction	1
2	Elem	Elements of Magnetohydrodynamics	
	2.1	The Induction Equation	5
	2.2	The Momentum Equation	14
	2.3	Vorticity	17
	2.4	Energy Conservation	20
	2.5	Magnetic Helicity	21
	2.6	Dissipation in Space Plasmas	26
	2.7	Magnetohydrodynamic Waves	40
	2.8	Instabilities Mediated by Magnetic Fields	41
	2.9	Magnetic Reconnection	49
	2.10	Turbulent Flows	53
3	Obset	rvational Signatures of Magnetic Fields	68
	3.1	Synchrotron Radiation	68
	3.2	Polarization and the Stokes Parameters	79
	3.3	Describing Polarization over the Whole Sky	82
	3.4	Intrinsic Polarization of Synchrotron Emission	86
	3.5	Radio Spectra	87
	3.6	Synchrotron Intensity and Propagation Effects	94
	3.7	The Radio Sky	98
	3.8	Faraday Rotation	101
	3.9	Light Polarization by Dust	104
	3.10	Zeeman Splitting of Spectral Lines	115
4	Polar	ization and Depolarization	121
	4.1	The Complex Linear Polarization	121
	4.2	Differential Faraday Rotation	124

v

.

vi		Contents	
	4.3	Polarization in a Random Magnetic Field	128
	4.4	Wavelength-Independent Depolarization	132
	4.5	Equipartition between a Magnetic Field and Cosmic	107
	1.6	Kays	13/
	4.6	Internal Faraday Dispersion	138
	4.7	Depolarization Mechanisms Combined	142
	4.8	Faraday Screens	145
	4.9	RM Gradient across the Beam	148
	4.10	Anomalous Depolarization in a Herical Magnetic Field	152
	4.11	Small Filling Factors	155
	4.12	Bandwidin Depolarization	155
	4.13	The Faraday Structure of a Radio Source	130
5	The C	Concept of Hydromagnetic Dynamo	160
	5.1	Anti-dynamo Theorems	162
	5.2	Fast Dynamos	166
	5.3	Turbulent Dynamos	169
6	The F	Fluctuation Dynamo	171
	6.1	Kinematic Dynamo	172
	6.2	Fluctuation Dynamo in Multi-scale Flows	180
	6.3	Fluctuation Dynamo in Compressible Flows	182
	6.4	Magnetic Field Statistics and Intermittency	183
	6.5	Magnetic Structures in the Fluctuation Dynamo	185
	6.6	Non-linear Effects	191
	6.7	Fluctuation Dynamos in Silico	197
	6.8	Reconnecting Flux Rope Dynamo	200
7	The N	Mean-Field Dynamo	207
	7.1	Elementary Dynamo Theory	207
	7.2	Averaging Procedures	211
	7.3	The Mean-Field Induction Equation and Electromotive	
		Force	218
	7.4	Kinematic Mean-Field Dynamo	218
	7.5	The First-Order Smoothing Approximation (FOSA)	220
	7.6	δ -Correlated Velocity Fields	223
	7.7	Renovating Random Flows	224
	7.8	Operator Splitting for a Renovating Flow	230
	7.9	Turbulent Diamagnetism	232
	7.10	Other Mean-Field Dynamo Effects	234
	7.11	Non-linear Mean-Field Dynamos	235
	7.12	Magnetic Helicity in the Mean-Field Theory	240
	7.13	Magnetic Helicity Density of a Random Field	245

		Contents	vii
	7.14 7.15	The Dynamic Saturation of Mean-Field Dynamos Turbulent Transport Coefficients from Numerical	250
		Simulations	250
	7.16	Simulations of Interstellar Magnetic Fields	255
8	The H	Fluctuation and Mean-Field Dynamos Unified	259
	8.1	Kinematic Dynamos	260
	8.2	The Magnetic Helicity Constraint	263
	8.3	Non-linear Dynamo Competition	265
9	Seed	Magnetic Fields	268
	9.1	Baroclinic Batteries	268
	9.2	Plasma Interaction with Radiation	271
	9.3	Plasma Instabilities	271
	9.4	Magnetic Fields Ejected from Stars and Active Galactic	272
	0.5	Nuclei Larga Saala Saad Magnatia Eialda from Small Saalaa	272
	9.5	Large-Scale Seed Magnetic Fields from Small Scales	215
10	Inters	stellar and Intergalactic Medium	275
	10.1	Spiral Galaxies	275
	10.2	Coronae of Spiral Galaxies	289
	10.3	Cosmic Rays	301
	10.4	Elliptical Galaxies	305
	10.5	Intergalactic and Cosmological Plasmas	309
11	Kiner	matic Dynamos in Galaxies	316
	11.1	Boundary Conditions	319
	11.2	Dynamo Control Parameters	319
	11.3	Field Distribution across the Disc	321
	11.4	Radial Distribution of an Axisymmetric Magnetic Field	332
	11.5	Turbulent Diamagnetism in Galaxies	338
	11.6	Propagating Magnetic Fronts	339
	11.7	Spherical Mean-Field Dynamos	341
	11.8	Non-axisymmetric Magnetic Fields in a Thin Disc	349
	11.9	Accretion and Dynamo Action	355
12	Non-	linear Mean-Field Galactic Dynamos	358
	12.1	Dynamic and Quasi-kinematic Non-linearities	358
	12.2	Non-linear States of Thin-Disc Dynamos	359
	12.3	Magnetic Helicity Balance and Dynamic Non-linearity	361
	12.4	Dynamos Driven by Magnetic Buoyancy	365
	12.5	Other Non-linear Effects	370
	12.6	Disc Dynamos in an External Magnetic Field	370

viii		Contents	
12	Theor	and Observations Dut To eath or	275
15	1 neor	Observations Put Together	5/5
	15.1	Eislde	275
	12.2	Fields Magnetic Field Strength	276
	13.2	Dendem Megnetic Fields	270
	13.3	Randolli Magnetic Fields	519
	13.4	Model	201
	12.5	Competent of the Large Scale Magnetic Field	206
	13.5	Symmetries of Coloctic Magnetic Fields	380
	12.0	Strength of the Mean Magnetic Field	209
	13.7	Dadial Structure and Magnetic Povorsals	590 401
	13.0	Magnetic Fields and the ISM Structure	401
	13.9	Magnetic Fields and the Spirel Dettern	400
	12.10	Magnetic Fields in Calastic Caranas	415
	12.11	Deverf and Imagular Calavias	421
	13.12	Elliptical Calavias	423
	13.13	Empireal Galaxies	430
	13.14	Magnetic Fields and Galaxy Formation	433
14	Magn	etohydrodynamics of Galaxy Clusters	447
	14.1	Observations of Magnetic Fields in Galaxy	
		Clusters	447
	14.2	Origin of the Cluster Magnetism	449
	14.3	Intracluster Turbulence	451
	14.4	The Fluctuation Dynamo in the Intracluster Gas	460
	14.5	Faraday Rotation in Galaxy Clusters	463
	14.6	Polarized Synchrotron Emission from Cluster Radio	
		Haloes	468
	14.7	Plasma Dynamos and Galaxy Clusters	469
15	Magn	etic Fields in the Early Universe	471
10	15.1	Introduction and Overview	471
	15.2	Cosmology and the Early Universe	474
	15.3	Electrodynamics in a Curved Space–Time	479
	15.4	The Primordial Magnetogenesis	489
	15.5	Evolution of Primordial Magnetic Fields in the Linear	.07
	1010	Regime	503
	15.6	Non-linear Evolution of Primordial Fields	509
16	Signat	tures of Primordial Magnetic Fields	519
	16.1	Cosmic Microwave Background Signals	519
	16.2	Primordial Magnetic Fields after the Recombination	530
	16.3	Constraints from Faraday Rotation Observations	542
	16.4	Constraints from γ -Ray Observations	543

	Contents	ix
16.5	Primordial Magnetic Fields and Turbulent Dynamos	546
Reference	S	548
Index		611

Preface

This is a book on the astro*physics* of magnetic fields on galactic and extragalactic scales, on their origin, structure and evolution with cosmic time. When discussing magnetic fields and their significance, we emphasize the physical foundations attempting to present a coherent, unified picture of the astronomical objects and processes. Astrophysics is an observational science. Therefore, we present the theoretical picture within a rich framework of observational information: this picture cannot exist without its frame. When discussing the observations, we try to put them, again, on a firm physical ground presenting observational results in a physical context rather than as isolated facts. The theoretical picture and its observational framework thus merge and become inseparable. We make an effort to present observations in a form understandable to theoreticians while discussing theory in a form suitable for observers. This is a difficult task, and our success can only be judged by the reader.

We believe that now is the right time to write a new book on the subject. Both observations and theory have made very substantial progress since the earlier book on a similar subject (Ruzmaikin et al., 1988b). These new results need to be summarized, generalized, unified, and put into the general physical context in a manner only a self-contained book can do. This book attempts to do just that.

With this attitude in mind, we felt it necessary to introduce the physical background of magnetohydrodynamics (MHD), elements of plasma physics, some of cosmic-ray dynamics, theory of synchrotron radiation, general relativity and cosmology. As a consequence, some parts of the book balance on a narrow borderline between a textbook and a research monograph. The result is reasonably selfcontained but the length of the text has unavoidably increased. We are neither the first nor the last to admit this problem ('I am sorry this letter is so long; I did not have time to make it shorter' – Blaise Pascal), but we have made an effort to make it as short as practical. Many readers will find that they can skip the basics and read sections and chapters on current research, where we present the latest results and try to anticipate future developments.

xii

Preface

The parts of the text that summarize the necessary background may be useful as an introduction to advanced textbooks, they may also help to consolidate any existing knowledge. Throughout the text, mathematical derivations and physical arguments are supplied with sufficient detail as to allow the reader to reproduce them without excessive effort. We have been systematically replacing phrases like 'it can easily be shown', which are numerous in the first draft, with details of the calculations. Many examples and calculations can be converted into problems and projects for an advanced undergraduate or postgraduate course on astrophysical magnetohydrodynamics.

Our exposition is unified by the common basis of the general physical theory of magnetic fields in a moving, electrically conducting medium, especially in turbulent flows. We treat magnetic fields in a broad variety of astrophysical objects within a coherent physical and mathematical framework with the dynamo theory as its cornerstone. The discussion also extends further to processes in the Early Universe. Our goal is to provide a logical and, as far as possible, reasonably complete picture of the origin, evolution, observed properties and physical effects associated with magnetic fields in a range of astrophysical objects from galactic to cosmological scales. We do not discuss the magnetic fields of stars and planets because the physical processes involved are somewhat different. However, the significance and applicability of the general dynamo paradigm developed here extend to radio galaxies, active galactic nuclei, stars, accretion discs and planets.

A reader interested in just one type of object (say, elliptical galaxies) would not need to read the whole book. We have structured the text with such a reader in mind. The book consists of a few core chapters where the basic physical ideas and mathematical techniques are introduced (at both heuristic and more formal levels), and several themes are threaded throughout the whole text which causes unavoidable repetition justified by our attempt to make some parts of the text as self-contained as practical. Various parts of the text contain models and results which were not published before as they developed in the process of writing this book.

We dedicate this book to our extended families. The intellectual accomplishments of the previous two generations were our lifelong inspiration, and the daily support, patience and encouragement of the next two generations have made our work possible. We were fortunate to have an opportunity to learn from Shashikumar Chitre, Jayant Narlikar and Yakov Borisovich Zeldovich from the early stages of our academic lives; their wisdom and depth remain our guiding light. We are grateful to John Barrow, Rainer Beck, Elly Berkhuijsen, Axel Brandenburg, Leon Mestel, Rajaram Nityananda, Jeremiah Ostriker, Martin Rees, Alexander Ruzmaikin, Dmitry Sokoloff, Ethan Vishniac, Richard Wielebinski and many others who have deeply influenced our thoughts and opinions. It is our pleasure to

Cambridge University Press 978-0-521-86105-2 — Astrophysical Magnetic Fields Anvar Shukurov , Kandaswamy Subramanian Frontmatter <u>More Information</u>

Preface

thank our collaborators and colleagues who were a rich source of ideas and inspiration, including Andrew Baggaley, Aritra Basu, Abhijit Bendre, Pallavi Bhat, Dipankar Bhattacharya, Eric Blackman, Luke Chamandy, Arnab Rai Choudhuri, Ralf-Jürgen Dettmar, Torsten Enßlin, Andrew Fletcher, Peter Frick, Fred Gent, Kishore Gopalakrishnan, Christopher M. Harrison, Tess Jaffe, Charles Jose, Maarit Käpylä (nee Korpi), Beverley Linsley, Irina Makarenko, Nikolay Makarenko, David Moss, T. Padmanabhan, Luiz Felippe S. Rodrigues, Saumyadip Samui, Graeme Sarson, T. R. Seshadri, Amit Seta, Shiv Sethi, Ramkishor Sharma, Nishant Singh, Andrew Snodin, Andrew Soward, R. Srianand, S. Sridhar, Rodion Stepanov, Sharanya Sur, Devika Tharakkal, Pranjal Trivedi and S. Louise Wilkin. Some of them kindly read parts of the text and suggested important changes. Andrew Baggaley, Aritra Basu, Abhijit Bendre, Prasanta Bera, Pallavi Bhat, Axel Brandenburg, Luigina Feretti, Andrew Fletcher, Fred Gent, Marita Krause, Irina Makarenko, Mathieu Remazeilles, L. F. S. Rodrigues, Amit Seta, Shiv Sethi and Richard Shaw provided the data for or redrew several figures, some based on models modified according to our request. We thankfully acknowledge the help of Dipankar Bhattacharya, whose informal tutorials on the PostScript language have allowed us to adapt many figures to a common standard. The generous hospitality of IUCAA and Newcastle University has provided us with numerous opportunities to frequently argue – and always agree – in person. This book would have never been finished without the unfaltering patience and support of the staff at Cambridge University Press, in particular Vince Higgs.

xiii