Digital Image Processing for Medical Applications

The influence and impact of digital images on modern society is tremendous, and image processing is now a critical component in science and technology. The rapid progress in computerized medical image reconstruction, and the associated developments in analysis methods and computer-aided diagnosis, has propelled medical imaging into one of the most important sub-fields in scientific imaging.

This text is intended for use in a first course in image processing and analysis for final-year undergraduate or first-year graduate students. It takes its motivation from medical applications and uses real medical images and situations to clarify concepts and to build intuition and understanding. Designed for readers who will become end users of digital image processing, the effective use of image processing tools is emphasized. An overview of the fundamentals of the most important clinical imaging modalities in use is included to provide a context, and to illustrate how the images are produced and acquired. Through using this text, students will understand why they are undertaking particular operations, and practical computer-based activities will enable them to see in real time how operations affect real images.

Geoff Dougherty is Professor of Applied Physics and Medical Imaging at California State University, Channel Islands, where he teaches both undergraduate and graduate courses in image processing, medical imaging and pattern recognition. He has been conducting research in the applications of image processing and analysis to medical images for over 15 years, and is the author of more than 60 publications. He is a Senior Member of the IEEE, a Fellow of the IET and a Member of the American Association of Physicists in Medicine (AAPM). Cambridge University Press 978-0-521-86085-7 - Digital Image Processing for Medical Applications Geoff Dougherty Frontmatter <u>More information</u>

Digital Image Processing for Medical Applications

GEOFF DOUGHERTY

California State University, Channel Islands

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521860857

© G. Dougherty 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Dougherty, Geoff, 1950–
Digital image processing for medical applications / Geoff Dougherty.
p. ; cm.
Includes bibliographical references and index.
ISBN 978-0-521-86085-7 (hardback)
1. Diagnostic imaging – Digital techniques. 2. Image processing – Digital techniques I. Title.
[DNLM: 1. Diagnostic Imaging. 2. Image Processing, Computer-Assisted. 3. Medical Informatics
Applications. WN 180 D732d 2009]
RC78.7.D53D72 2009
16.07'54'-dc22

2008031555

ISBN 978-0-521-86085-7 hardback Additional resources for this publication at www.cambridge.org/dougherty

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface	<i>page</i> ix
	Acknowledgements	xiii
Part I	Introduction to image processing	1
1	Introduction	3
	1.1 Imaging systems	3
	1.2 Objects and images	7
	1.3 The digital image processing system	10
	1.4 Applications of digital image processing	13
	Exercises	15
2	Imaging systems	16
	2.1 The human visual pathway	16
	2.2 Photographic film	20
	2.3 Other sensors	26
	2.4 Digitizing an image	27
	2.5 The quality of a digital image	34
	2.6 Color images	40
	Computer-based activities	43
	Exercises	45
3	Medical images obtained with ionizing radiation	47
	3.1 Medical imaging modalities	47
	3.2 Images from x-rays	48
	3.3 Images from γ-rays	77
	3.4 Dose and risk	84
	Computer-based activities	86
	Exercises	87

	Contents	
4	Medical images obtained with non-ionizing radiation	90
	4.1 Ultrasound imaging	91
	4.2 Magnetic resonance imaging	100
	4.3 Picture archiving and communication systems (PACS)	115
	Computer-based activities	118
	Exercises	120
Part II F	undamental concepts of image processing	121
5	Fundamentals of digital image processing	123
	5.1 The gray-level histogram	123
	5.2 Histogram transformations and look-up tables	135
	Computer-based activities	148
	Exercises	151
6	Image enhancement in the spatial domain	155
	6.1 Algebraic operations	156
	6.2 Logical (Boolean) operations	159
	6.3 Geometric operations	162
	6.4 Convolution-based operations	170
	Computer-based activities	189
	Exercises	191
7	Image enhancement in the frequency domain	194
	7.1 The Fourier domain	195
	7.2 The Fourier transform	198
	7.3 Properties of the Fourier transform	205
	7.4 Sampling	207
	7.5 Cross-correlation and autocorrelation	217
	7.6 Imaging systems – point spread function and optical transfer function	219
	7.8 Tomographic reconstruction	223
	Computer-based activities	231
	Exercises	243
8	Image restoration	
	8.1 Image degradation	246
	8.2 Noise	247
	8.3 Noise-reduction filters	252
	8.4 Blurring	258

	Contents	vii
	8.5 Modeling image degradation	260
	8.6 Geometric degradations	263
	Computer-based activities	268
	Exercises	269
Part II	I Image analysis	271
9	Morphological image processing	273
	9.1 Mathematical morphology	273
	9.2 Morphological operators	275
	9.3 Extension to grayscale images	295
	Computer-based activities	301
	Exercises	305
10	Image segmentation	309
	10.1 What is segmentation?	309
	10.2 Thresholding	311
	10.3 Region-based methods	321
	10.4 Boundary-based methods	324
	10.5 Other methods	326
	Computer-based activities	335
	Exercises	338
11	Feature recognition and classification	339
	11.1 Object recognition and classification	340
	11.2 Connected components labeling	340
	11.3 Features	342
	11.4 Object recognition and classification	348
	11.5 Statistical classification	351
	11.6 Structural/syntactic classification	364
	11.7 Applications in medical image analysis	364
	Computer-based activities	367
	Exercises	367
12	Three-dimensional visualization	369
	12.1 Image visualization	369
	12.2 Surface rendering	370
	12.3 Volume rendering	374
	12.4 Virtual reality	376
	Computer-based activities	377
	Exercises	377

viii	Contents	
Part IV	/ Medical applications and ongoing developments	379
13	Medical applications of imaging	381
	13.1 Computer-aided diagnosis in mammography	381
	13.2 Tumor imaging and treatment	385
	13.3 Angiography	386
	13.4 Bone strength and osteoporosis	388
	13.5 Tortuosity	389
14	Frontiers of image processing in medicine	395
	14.1 Trends	395
	14.2 The last word	398
	Appendix A The Fourier series and Fourier transform	399
	Appendix B Set theory and probability	405
	Appendix C Shape and texture	423
	Bibliography	432
	Index	440

The color plates are situated between pages 178 and 179.

Cambridge University Press 978-0-521-86085-7 - Digital Image Processing for Medical Applications Geoff Dougherty Frontmatter More information

Preface

The influence and impact of digital images on modern society, science, technology and art are tremendous. Image processing has become such a critical component in contemporary science and technology that many tasks would not be attempted without it. It is a truly interdisciplinary subject that draws from synergistic developments involving many disciplines and is used in medical imaging, microscopy, astronomy, computer vision, geology and many other fields.

The rapid and continuing progress in computerized medical image reconstruction, and the associated developments in analysis methods and computer-aided diagnosis, have propelled medical imaging into one of the most important sub-fields in scientific imaging. This book takes its motivation from medical applications and uses real medical images and situations to clarify and consolidate concepts and to build intuition, insight and understanding. An overview of the fundamentals of the most important clinical imaging modalities in use is included to provide a context, and to illustrate how the images are produced and acquired.

This is a text for use in a first practical course in image processing and analysis, for final-year undergraduate or first-year graduate students with a background in biomedical engineering, computer science, radiologic sciences or physics. Designed for readers who will become "end users" of digital image processing in the biomedical sciences, it emphasizes the conceptual framework and the effective use of image processing tools and uses mathematics as a tool, minimizing the advanced mathematical development of other textbooks.

Discussions of the major medical imaging modalities enable students to understand the diagnostic tasks for which images are needed and the typical distortions and artifacts associated with each modality. This knowledge then motivates the presentation of the techniques needed to reverse distortions, minimize artifacts and enhance important features. Students understand *why* they are undertaking particular operations, and the practical activities enable them to see in real time *how* operations affect real images. Image processing is a hands-on discipline, and the best way to learn is by doing. Theory and practice are linked, each reinforcing the other.

The key distinguishing features of the book are as follows.

- Its pedagogical approach combines intuition with problem-solving, and emphasizes conceptual learning, i.e. understanding the "big picture," rather than getting over-whelmed with the details.
- Overviews summarize the essential purpose of the material covered in each chapter.
- Learning objectives list the specific knowledge and skills to be acquired.

x Preface

- Practical computer-based activities, referred to in each chapter, build intuition, skills and confidence. They can be used by the instructor for class demonstrations and/or by the students as hands-on activities.
- Accessible end-of-chapter problems reinforce and consolidate understanding.
- Only a modest background in mathematics and science, at the level of College/ University entry, is assumed.

Courses supported and organization of the text

The text is based on courses in image analysis, pattern recognition and medical imaging that I teach at California State University, Channel Islands, and have taught previously at the Health Sciences Center, Kuwait University. The material is more than can comfortably be covered in a single-semester course, and can be fine-tuned to specific courses and audiences. The book can be used to support several different courses, by emphasizing different chapters and skimming or avoiding others altogether. For example, a course for biomedical engineers or radiologic science students would include all the material from Chapters 3 and 4, and might skim through Chapters 10 and 11. It would benefit from an early visit to a local hospital or imaging center to view image acquisition and analysis in a clinical setting. A few invited talks from medical professionals, such as radiologists, pathologists or oncologists, could be included to add to the clinical perspective. A course in image analysis for computer scientists or physicists would probably downplay Chapters 3-4, omit Chapters 13 and 14, skim through Chapter 11, and ensure that all the activities and end-of-chapter problems were attempted. And a course in pattern recognition, or a graduate course, would concentrate on Chapters 9-12 and the material in the appendices.

Each chapter starts with an overview of its contents and a list of its objectives. Concepts, techniques and algorithms are introduced and then applied to typical medical imaging problems. The material is integrated with a number of practical computer-based activities, arranged at the end of each chapter, and supplemented by exercises, mostly numerical, for the reader to verify his/her understanding. Worked examples are included in separate boxed sections.

The book comprises four parts. Part I is an introduction to image processing. It provides an overview of the field and its many applications (Chapter 1), explains how digital images are acquired and discusses their characteristics (Chapter 2). It explains how medical images are produced, using both ionizing (Chapter 3) and non-ionizing radiation (Chapter 4), and discusses the most important clinical imaging modalities.

Part II explains the fundamental concepts of image processing. Gray-level histograms are introduced, and display look-up tables (LUTs) discussed in terms of changing image appearance (Chapter 5). Image enhancement in both the spatial and frequency domains is addressed in Chapters 6 and 7, respectively. Chapter 8 discusses techniques which aim to restore a degraded image to its original condition.

Part III deals with image analysis and visualization. Morphology is introduced as an image analysis tool in Chapter 9, illustrating its applicability to medical imaging problems.

Preface

Segmentation techniques are discussed in Chapter 10, which leads into feature extraction and classification in Chapter 11. Chapter 12 discusses how the three-dimensional structure of internal organs can be visualized and displayed convincingly on a two-dimensional computer monitor.

Part IV discusses a number of specific applications in medicine, indicating the image analysis techniques that are being used (Chapter 13), and considers the trends and ongoing developments in medical imaging (Chapter 14).

Three appendices provide further details (on the Fourier transform, set theory and probability, and shape and texture) relevant to the techniques explored.

Computer-based activities

ImageJ is a very popular public domain (http://rsb.info.nih.gov/ij/) Java image processing and analysis program that was developed at the National Institutes of Health. It has a convenient and intuitive graphical user interface (GUI), and has been chosen for its ease of use for the computer-based imaging activities which are integrated within the book. Its source code is freely available, so that users have complete freedom to run, copy, distribute, study, change and improve the software (see www.gnu.org/philosophy/freesw.html). At a more basic level it allows users to collect imaging operations together in macros, which are stored as text files and are easy to write, edit and debug.

However, most of the exercises can be easily duplicated to run in an alternative environment, such as Matlab if the Matlab Toolbox/GUI, DipImage (available as a free download to non-commercial use at www.diplib.org/home2224) is used; without DipImage, the necessary programming in MatLab can be tedious and distract from learning the imaging fundamentals.

The ImageJ homepage contains links to documentation and downloads. ImageJ runs on any computer with a Java 1.1 or later virtual machine, but in order to be able to compile additional "plugins" (optional extras) and manage memory more efficiently, it is recommended that it be downloaded together with the full Java runtime environment. The examples in this book use an expansion of ImageJ version 1.37v with Java 1.5.0 (a total download of about 20 MB). Additional plugins can be downloaded from the ImageJ site or others, and comprise compiled java files (named *.class) which need to be placed in the "Plugins" sub-folder of the ImageJ folder.

It is recommended that you download the latest version of ImageJ bundled with Java 1.5.0 from http://rsb.info.nih.gov/ij/download.html. Once unzipped and installed in a directory called ImageJ, a shortcut will be installed on your desktop and in your Start/ All Programs menu. The ImageJ core program (ij.jar) is frequently upgraded. You should visit the ImageJ website (http://rsb.info.nih.gov/ij/) routinely to check for upgrades, download the upgraded *.zip file and use the extracted ij.jar to replace the current ij.jar file. (You can find your current version by opening ImageJ and going to Help, About ImageJ; close ImageJ before replacing the ij.jar file with an upgrade.)

A collection of plugins has been collated, comprising some freely available from the Plugins download site (http://rsb.info.nih.gov/ij/plugins/index.html) and others written

Cambridge University Press 978-0-521-86085-7 - Digital Image Processing for Medical Applications Geoff Dougherty Frontmatter <u>More information</u>

xii Preface

specifically for this text. They are available at the book website in folders with names such as Ch.5 Plugins (to facilitate the computer activities in Chapter 5); copy them into the ImageJ folder called "Plugins" on your computer. These additional plugins become available in the Plugins menu when ImageJ is next run. Most of the computer activities require images for processing; these can be found at the book website in folders with names such as Ch.5 Activities, and should be copied to the ImageJ directory in your computer for easy access. After first opening ImageJ, go to Edit, Options, Memory and change the memory allocated to ImageJ to equal 75% of your computer's RAM, which you can find from My Computer, View System Properties, Hardware.

The computer-based activities are referred to within the text and are collected at the end of each chapter. The required images are referred to in bold Courier New font, e.g. lena, and the ImageJ menu functions are referred to in bold Arial, e.g. **Image/Process/Threshold ...** There are also some computer activities which use other resources, including video files and Excel spreadsheets.

Cambridge University Press 978-0-521-86085-7 - Digital Image Processing for Medical Applications Geoff Dougherty Frontmatter <u>More information</u>

Acknowledgements

I would like to thank all my previous students for their feedback on the courses which eventually led to this book; especially Zainab Kawaf, Terry Peters, Jen Eaton, Tom MacGregor, Dolly Thornton, Shahab Lashkari, Kelsey Belden, Mike Ferguson, Aubrey Henderson, Jake King, Sandra Waterbury, James Kang, David Corcoran, Dantha Manikka-Baduge, Feng Lin, Robert Lawson, Janine Lansdown, Jarrod Long, Kimberly Watson, Charles Zilm, Jen Morrison and Dave Bennett. My son Daniel assisted me with many of the illustrations. I am grateful to Diana Gillooly and Catherine Appleton at Cambridge University Press for their support and encouragement throughout the whole process of writing the book, and to various reviewers who have critiqued the manuscript and trialed it with their classes. Special thanks go to my wife Hajijah and family (Adeline, Nadia and Daniel) for their patience, empathy and understanding while I was involved in writing. The book is dedicated to them.