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Michel Herman during his lecture for the International Conference on Dynamical
Systems, IMPA, Rio de Janeiro, 19–28 July 2000, dedicated to the 60th anniversary of

Professor Jacob Palis.
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Michael Robert Herman, 1942–2000
The untimely death of Michael Robert Herman in November 2000 deprived the scientific
community of one of its deepest mathematical minds, who had a profound impact on the
theory of dynamical systems over the last 30 years.

Born in New York, he was educated in France. He was a student at École Polytechnique
before being one of the first members of the Centre de Mathématiques created there by
Laurent Schwartz. For more than 20 years, his seminar had a major influence worldwide
and was the main vector of the development of the theory of dynamical systems in France.
All of his students remember with thankfulness and emotion the passion with which he
led them into the wonderful mathematical world. He maintained through the years strong
connections with the Instituto de Matemática Pura e Aplicada in Rio de Janeiro.

His interests covered most aspects of the modern theory of dynamical systems and
much beyond that, from economics to arts and philosophy. However, it is fair to say that
from the start the so-called small divisors problems, related in particular to the stability
of quasiperiodic motions, were closest to his heart. His epoch-making theorem on the
linearization of circle diffeomorphisms [1–4]†, his two volumes [5, 6] on invariant curves
for twist diffeomorphisms, which are still the standard reference 20 years later, his very
many deep contributions on the existence and geometry of invariant tori all bear witness to
that interest [7–10].

His new method [11, 12] for bounding from below Lyapunov exponents through
subharmonicity has had deep developments.

He was also a master of the subtle counterexample, as his construction [13, 14] for the
smooth Hamiltonian closing lemma testifies.

Hopefully this volume reflects the variety of his interests and the frontier of present
research, the drawing of which he contributed decisively.

Michael was also one of the founding editors of Ergodic Theory & Dynamical Systems.
He helped set up high standards for the journal. We have tried to keep these very high
standards in this volume.

A. Fathi
J.-C. Yoccoz

† Numbers refer to the list of Herman’s published papers that follow this introduction.
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[3] Michael Herman and Francis Sergeraert. Sur un théorème d’Arnold et Kolmogorov. C. R. Acad. Sci. Paris
Sér. A–B, 273 (1971), A409–A411.
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International Congress of Mathematicians (Helsinki, 1978). Acad. Sci. Fennica, Helsinki, 1980,
pp. 811–820.

[20] A. Fathi, M.-R. Herman and J.-C. Yoccoz. A proof of Pesin’s stable manifold theorem. Geometric
Dynamics (Rio de Janeiro, 1981). Springer, Berlin, 1983, pp. 177–215.
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Mathématique de France, Paris, 1983 (with an appendix by Albert Fathi and an English summary).
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L2 regularity of measurable solutions of a
finite-difference equation of the circle†

MICHAEL ROBERT HERMAN

Mathematics Institute, Warwick University, UK
and

Centre de Mathematiques, Ecole Polytechnique, Plateau de Palaiseau,
91120 Palaiseau, France

We show that if ϕ is a lacunary Fourier series and the equation ψ(x) − ψ(x + α) =
ϕ(x), x mod 1 has a measurable solution ϕ, then in fact the equation has a solution in L2.

(1) We consider the circle T = R/Z and the translations (or rotations) Rα = x →
x + α(α ∈ T).

For 1 ≤ p ≤ +∞, let Lp = Lp(T, dx, C) with the norm ‖·‖p . The only measure
considered is the Haar measure of T, dx = m. All equalities are to be considered m-almost
everywhere.

(2) Let ϕ ∈ L1 and α ∈ T; we try to solve

ψ − ψ ◦ Rα = ϕ (*)

with ψ measurable and the equality almost everywhere.
If one supposes that ψ is in L1, then by identification of Fourier coefficients if

ϕ(x) =
∑
k∈Z

ϕ̂(k)e2xikx ,

then one has

ψ(x) =
∑
k∈Z

ϕ̂(k)

1 − e2π ikα
e2πikx,

(with the convention that 0/0 = 0). (Of course one has 0 = ∫
T

ϕ(x) dx).

(3) The case when a = p/q (mod 1), (p, q) = 1. Then a necessary and sufficient
condition for measurable solutions to (*) is

q−1∑
i=0

ϕ ◦ Riα = 0. (1)

If (1) is satisfied then the equation (*) has solutions just as regular as is ϕ.

† This work of Michel Herman appeared only as a preprint of the Mathematics Institute, University of Warwick,
dated May 1976. It was turned into TEX format by Claire Desescures. Minor editorial work was done by
Albert Fathi.
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8 M. R. Herman

(4) The case when α is irrational. It is easy (by Fourier series) to construct ϕ ∈ L1 with∫
T

ϕ(x) dx = 0 and an irrational α such that the equation (*) has no solution in L1. By the
ergodicity of Rα, measurable solutions of (*) differ by a constant.

If one looks for solutions of (*) which are only measurable then Anosov has shown that
one has necessarily ∫

T

ϕ(x) dx = 0 (for ϕ ∈ L1).

Furthermore, Anosov has constructed ϕ ∈ Cω(T) with
∫
T

ϕ(x) dx = 0 and an irrational α

such that

sup
k 	=0

∣∣∣∣ ϕ̂(k)

1 − e2πikα

∣∣∣∣ = +∞,

but nevertheless the equation (*) has a measurable solution ψ (of course not in L1)
(see [1]).

We will show that the examples of Anosov cannot happen when ϕ is a lacunary Fourier
series.

It is then easy to construct a ϕ with
∫
T

ϕ(x) dx = 0 and an irrational α such that the
equation (*) has no measurable solution ψ (since there is no L2 solution).

For other examples see [6].

(5) Let �+ = ni be a lacunary sequence of positive integers: n0 = 1 and nn+1/ni ≥ q > 1
for all i.

Let � = �+ ∪ {0} ∪ (−�+) be the symmetric sequence of integers.
One denotes

L
p
� = {ϕ ∈ Lp | ϕ̂(n) = 0 if n /∈ �}.

One says that ϕ ∈ L1 is a lacunary Fourier series if there exists a lacunary sequence � as
above such that ϕ ∈ L1

�. Then one has, for all 1 ≤ p < +∞, ϕ ∈ L
p
�; and all the norms

‖ · ‖p are equivalent on L2
�(see [5]).

(6) We propose to prove the following.

THEOREM. Let ϕ ∈ L2
� and α ∈ T. If the equation

(∗)ψ − ψ ◦ Rα = ϕ

has a measurable solution ψ , then the equation has a solution in L2
� and if α ∈ T − Q/Z

then in fact, by the ergodicity of Rα,ψ ∈ L2
�.

To prove the theorem one needs the following lemmas.

(7)

LEMMA. Let f : T → T be a bijection preserving the Haar measure m.
Let K be a measurable set of T. Let ε > 0 and the set of integers

A = {n ∈ Z | m(K ∩ f n(K)) ≥ m(K)2 − ε}.
The set of integers A is relatively dense: there exists a positive integer k, such that
{j, . . . , j + k} ∩ A 	= φ, for all j ∈ Z.

For a proof see [3, p. 31].
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L2 regularity of measurable solutions 9

(8)

LEMMA†. Let L2
� be given. There exist constants C > 0 and b (0 < b < 1) such that if

B ⊂ T is measurable with m(B) ≥ b, then for all ϕ ∈ L2
� one has

C

( ∫
B

|ϕ(x)|2 dx

)1/2

≥ ‖ϕ‖2.

Proof. Let 0 < a < 1 and ϕ ∈ L2
� with ‖ϕ‖2 = 1. Let

A(ϕ) ≡ A = {x ∈ T | |ϕ(x)| ≥ a}.
We have ‖ϕ‖2

2 = 1 = ∫
T−A|ϕ(x)|2 dx + ∫

A|ϕ(x)|2 dx ≤ a2 + ∫
A|ϕ(x)|2 dx.

One has by the Hölder inequality

1 ≤ ‖ϕ‖4(m(A))1/4 + a.

Since the norms ‖ · ‖2 and ‖ · ‖4 are equivalent on L2
�, one has ‖·‖4 ≤ k‖·‖2, k being a

constant greater than 1.
It follows that

m(A) ≥
(

1 − a

k

)4

; (2)

choose

b = 1 − 1

2

(
1 − a

k

)4

.

If B ⊂ T with m(B) ≥ b and if ϕ ∈ L2
� with ‖ϕ‖2 = 1, we have

m(A(ϕ) ∩ B) ≥ 1

2

(
1 − a

k

)4

by (2), so ∫
B

|ϕ(x)|2 dx ≥ 1

2
a2

(
1 − a

k

)4

=
(

1

C

)2

.

The result follows by

C

( ∫
B

|ϕ(x)|2 dx

)1/2

≥ ‖ϕ‖2. �

(9)

LEMMA. Let ϕ ∈ L2. A necessary and sufficient condition for a ψ ∈ L2 that verifies
ψ − ψ ◦ Rα = ϕ to exist is that supn∈N ‖ϕn‖2 < +∞ with ϕn = ∑n−1

i=0 ϕ ◦ Riα .

For the proof see [4]. In fact it results from the more general lemma, which uses the fact
that the unit ball of a reflexive Banach space is weakly compact, and the Markov–Kakutani
fixed point theorem (affine version).

† I thank Y. Meyer who brought to my attention the fact that Carleson has proved a stronger lemma (unfortunately
unpublished): For every B with m(B) > 0 there exists C(m(B), q) > 0 such that one has the conclusion of the
lemma. I thank B. Maurey for the proof proposed.
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10 M. R. Herman

LEMMA. Let L be a reflexive Banach space of norm ‖·‖ and u : L → L a continuous
linear operator. Given x ∈ L, a sufficient condition for the existence of a y ∈ L satisfying
y − u(y) = x to exist is that

sup
n∈N

∥∥∥∥
n−1∑
i=0

ui(x)

∥∥∥∥ < +∞;

the condition is necessary if supn∈N ‖un‖ < +∞.

(10) Proof of the theorem. Let L2
� be given and be determined by item (8) (and that depends

on �).
Let ε > 0 with (1 − ε)2 − ε ≥ b.
One starts with a measurable solution of

ψ − ψ ◦ Rα = ϕ, (*)

with ϕ ∈ L2
�. There exists a compact set K ⊂ T of measure ≥ 1 − ε, such that ψ|K is

continuous. By (*) one has

ψ − ψ ◦ Rnα =
n−1∑
i=0

ϕ ◦ Riα ≡ ϕn.

It follows that
( ∫

K∩Rnα(K)

|ϕn(x)|2 dx

)1/2

≤ 2 sup
x∈K

|ψ(x)| < +∞.

Let A = {n ∈ Z | m(K ∩ Rnα(K)) ≥ (1 − ε)2 − ε ≥ b}. By item (7), the
subset A is a relatively dense sequence of integers, and let k be the integer of (7).
Let B = {−k,−k + 1, . . . , k}. Since ϕn ∈ L2

� by (8) one has

sup
n∈A

‖ϕn‖2 = C1 < +∞.

Let C2 = supn∈B‖ϕn‖2 < +∞. Since every n ∈ Z can be written as n = n1 + n2 with
n1 ∈ A and n2 ∈ B and if n1, and n2 are positive integers, we have

ϕn1+n2 = ϕn1 ◦ Rn2α + ϕn2 ;
finally we deduce that

sup
n∈Z

‖ϕn‖2 ≤ C1 + C2

and the theorem results from (9).

(11) From the theorem we deduce the following: if ϕ ∈ L2
α , α is irrational, and ψ is

measurable and satisfies ψ − ψ ◦ Rα = ϕ, then ψ ∈ Lp for every 1 ≤ p < +∞ since ψ

is a lacunary Fourier series. In general, ψ /∈ L∞ even if ϕ is of class Cω as we will show
by a classical example.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521860687 - Dynamical Systems: Michael Herman Memorial Volume
A. Fathi and J.-C. Yoccoz
Excerpt
More information

http://www.cambridge.org/0521860687
http://www.cambridge.org
http://www.cambridge.org


L2 regularity of measurable solutions 11

Construction of an irrational α. Let α = 1/(a1 + (1/(a2 +· · · ))) be the continued fraction
of an irrational α (ai ≥ 1, ai ∈ N).

If pn/qn are the convergents of α, one has q0 = 1, q1 = a1 and qn = anqn−1 + qn−2,
if n ≥ 2. If x ∈ R and |||x||| is the distance of x to the nearest integer, one has

|||qnα||| <
1

qn+1
≤ 1

an+1qn

.

If one chooses the sequence (ai) so that it increases sufficiently rapidly, one easily
constructs an irrational α such that, for every n ≥ 2, one has

|||qnα||| ≤ e−qn. (+)

Let us remark that, for every irrational α, (q2n)n∈N is a lacunary sequence of positive
integer (in fact we have q2n+2/q2n ≥ 2 and also q2n+1/q2n−1 ≥ 2).

Construction of ϕ. Let n ≥ 1 be a sequence of complex numbers satisfying

∞∑
n=1

|c2n|2 < +∞ but
∞∑

n=1

|c2n| = +∞.

Let ϕ(x) = ∑∞
n=1 c2n(1 − e2πiq2nα)e2πiq2nx .

If α satisfies (+), then ϕ ∈ Cω(T, C) (and one has 0 = ∫
T

ϕ(x) dx).
Let ψ(x) = ∑∞

n=1 c2ne
2πiq2nx ; one has ψ ∈ L2 (and ψ is a lacunary Fourier series).

Furthermore, one has
ψ − ψ ◦ Rα = ϕ.

But ψ /∈ L∞, for if this was the case then, since ψ is a lacunary Fourier series, we would
have

∑∞
n=1|c2n| < +∞, which is contrary to the choice of the sequence (c2n) (see [5]).

(12) We have shown a proposition in [2] that implies the following remark.

Remark. Let ϕ : T → R be continuous (but not necessarily lacunary) and α irrational.
We suppose that there exists ψ ∈ L∞ with ψ − ψ ◦ Rα = ϕ; then ψ is almost everywhere
equal to a continuous function.
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