Lasers and Electro-optics

Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics, and optical engineering.

This new edition has been re-organized, so that it now covers many new topics such as the optics of stratified media, quantum-well lasers and modulators, free-electron lasers, diode-pumped solid-state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very-short-pulse lasers, and new applications of lasers.

The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction, and performance characteristics of different types of lasers and electro-optic devices.

Christopher C. Davis is Minta Martin Professor of Engineering and Professor of Electrical and Computer Engineering at the University of Maryland. He is co-author of the best-selling text *Building Scientific Apparatus* (fourth edition, Cambridge University Press, 2009).

Lasers and Electro-optics

Second Edition

CHRISTOPHER C. DAVIS

University of Maryland

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521860291

© C. Davis 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2014

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Davis, Christopher C., 1944-Lasers and electro-optics / Christopher C. Davis, University of Maryland. – Second edition. pages cm Includes bibliographical references and index. ISBN 978-0-521-86029-1 (hardback) 1. Lasers. 2. Electrooptics. I. Title.

> TA1675.D38 2014 621.36–dc23 2013019087

ISBN 978-0-521-86029-1 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface to the Second Edition

1	Electro	magnetic waves, light, and lasers	1				
	1.1	The laser	1				
	1.2	Light and electromagnetic waves	2				
	1.3	Some basic electromagnetic theory	3				
	1.4	The polarization state of an electromagnetic wave	5				
	1.5	Electromagnetic waves and their propagation through matter	6				
	1.6	Spontaneous and stimulated transitions	7				
	1.7	Lasers as oscillators	8				
	1.8	The energy levels of atoms, molecules, and condensed matter	10				
	1.9	Amplification at optical frequencies	11				
	1.10	The relation between energy density and intensity	16				
	1.11	The intensity of a beam of electromagnetic radiation in terms					
		of photon flux	20				
	1.12	Black-body radiation	20				
	1.13	The relation between the Einstein A and B coefficients	25				
	1.14	The effect of level degeneracy	27				
	1.15	The ratio of spontaneous and stimulated transitions	29				
	1.16	Problems	30				
	Furth	er reading	31				
	Refer	ences	31				
2	Optica	l frequency amplifiers	33				
	2.1	Introduction	33				
	2.2	Homogeneous line broadening	33				
	2.3	Inhomogeneous broadening	37				
	2.4	Optical frequency amplification	43				
	2.5	Optical frequency oscillation – saturation	48				
	2.6	The power output from a laser amplifier	58				
	2.7	The electron oscillator model of a radiative transition	59				
	2.8	The classical oscillator explanation for stimulated emission	66				
	2.9 Problems						
	References						

٧

vi			Contents	
		An int	vaduction to two practical lacor systems	70
	2	AII IIIU 2 1	Introduction	72
		3.1	Three, and four-level lasers	72
		3.2	The ruby laser	72
		3.4	The helium-neon laser	79
		Refe	rences	84
	4	Optica	Il resonators containing amplifying media	85
		4.1	Introduction	85
		4.2	Optical resonators containing amplifying media	87
		4.3	The oscillation frequency	91
		4.4	Multimode laser oscillation	93
		4.5	Mode-beating	100
		4.6	The power output of a laser	103
		4.7	Optimum coupling	106
		4.8	Problems	107
		Refe	rences	108
	5	Laser ı	radiation	109
		5.1	Introduction	109
		5.2	Diffraction	109
		5.3	Babinet's principle	111
		5.4	Two parallel narrow slits	112
		5.5	A single slit	112
		5.6	Two-dimensional apertures	113
		5.7	Laser modes	116
		5.8	Beam divergence	122
		5.9	The linewidth of laser radiation	122
		5.10	Coherence properties	125
		5.11	Interference	127
		5.12	Problems	130
		Refe	rences	130
	6	Contro	ol of laser oscillators	132
		6.1	Introduction	132
		6.2	Multimode operation	132
		6.3	Single-longitudinal-mode operation	133
		6.4	Mode-locking	137
		6.5	Methods of mode-locking	140
		6.6	Pulse compression	147
		6.7	Attosecond pulses	149
		Refei	rences	150
	7	Optica	Illy pumped solid-state lasers	153
		7.1	Introduction	153

vii		Contents	
	7.2	Optical pumping in three- and four-level lasers	153
	7.3	Pulsed versus continuous-wave operation	157
	7.4	Threshold population inversion and the stimulated-emission cross-section	159
	7.5	Paramagnetic-ion solid-state lasers	160
	7.6	The Nd: YAG laser	160
	7.7	Continuous-wave operation of the Nd:YAG laser	168
	7.8	The Nd^{3+} glass laser	169
	7.9	Geometrical arrangements for optical pumping	174
	7.10	High-power pulsed solid-state lasers	182
	7.11	Diode-pumped solid-state lasers	183
	7.12	Fiber lasers	184
	7.13	Relaxation oscillations (spiking)	188
	7.14	Rate equations for relaxation oscillation	190
	7.15	Undamped relaxation oscillations	194
	7.16	Giant-pulse (Q-switched) lasers	195
	7.17	A theoretical description of the Q-switching process	199
	7.18	Problem	203
	Refe	rences	204
8	Gas las	sers	206
	8.1	Introduction	206
	8.2	Excitation schemes	206
	8.3	The argon-ion laser	211
	8.4	Pumping saturation in gas-laser systems	213
	8.5	Pulsed gas lasers	214
	8.6	Continuous-wave ion lasers	217
	8.7	"Metal"-vapor ion lasers	220
	8.8	Gas discharges for exciting gas lasers	222
	8.9	Rate equations for gas-discharge lasers	225
	8.10	Problem	228
	Refe	rences	229
9	Molec	ular gas lasers l	232
	9.1	Introduction	232
	9.2	The energy levels of molecules	232
	9.3	Vibrations of a polyatomic molecule	236
	9.4	Rotational energy states	239
	9.5	Rotational populations	240
	9.6	The overall energy state of a molecule	242
	9.7	The carbon dioxide laser	244
	9.8	The carbon monoxide laser	249
	9.9	Other gas-discharge molecular lasers	251
	Refe	rences	251

viii			Contents	
	10	Molecul	lar gas lasers II	252
		10.1	Introduction	2.52
		10.2	Gas transport lasers	252
		10.3	Gas dynamic lasers	256
		10.4	High-pressure pulsed gas lasers	260
		10.5	Ultraviolet molecular gas lasers	264
		10.6	Photodissociation lasers	269
		10.7	Chemical lasers	270
		10.8	Far-infrared lasers	272
		10.9	Problem	274
]	Refere	ences	275
	11	Tunable	e lasers	276
		11.1	Introduction	276
		11.2	The titanium-sapphire laser	276
		11.3	Organic dye lasers	277
		11.4	Calculation of threshold pump power in dye lasers	285
		11.5	Inorganic liquid lasers	289
		11.6	Free-electron lasers	291
		11.7	Problems	298
]	Refere	ences	298
	12	Semico	nductor lasers	301
		12.1	Introduction	301
		12.2	Semiconductor physics background	301
		12.3	Carrier concentrations	307
		12.4	Intrinsic and extrinsic semiconductors	309
		12.5	The p–n junction	311
		12.6	Recombination and luminescence	316
		12.7	Heterojunctions	321
		12.8	Semiconductor lasers	328
		12.9	The gain coefficient of a semiconductor laser	331
		12.10	Threshold current and power-voltage characteristics	334
		12.11	Longitudinal and transverse modes	335
		12.12	Quantum-well lasers	336
		12.13	Semiconductor laser structures	341
		12.14	Surface-emitting lasers	348
		12.15	Laser diode arrays and broad-area lasers	350
		12.16	Blue-green lasers	352
		12.17	Quantum cascade lasers	353
		12.18	Silicon lasers	355
		12.19	Modulation of semiconductor lasers	356
		12.20	Problems	356

ix		Contents	
		Further reading	357
		References	357
	13	Passive optical systems	361
		13.1 Introduction	361
		13.2 The propagation of rays and waves through isotropic media	362
		13.3 Simple reflection and refraction analysis	363
		13.4 Paraxial-ray analysis	366
		13.5 Non-imaging light collectors	384
		13.6 Generalized imaging systems	385
		13.7 The numerical aperture	385
		13.8 Apertures, stops, and pupils	386
		13.9 Vignetting	389
		13.10 Exact ray tracing and aberrations	389
		13.11 Chromatic aberrations	391
		13.12 Geometrical aberrations	392
		13.13 Spot diagram	395
		13.14 The modulation transfer function	395
		13.15 The use of impedances in optics	398
		13.16 Problems	406
		References	407
	14	Periodic optical systems, resonators, and inhomogeneous media	409
		14.1 Introduction	409
		14.2 Plane waves in media with complex refractive indices	409
		14.3 Negative-refractive-index materials	411
		14.4 Structures with periodically varying dielectric properties	411
		14.5 The transfer matrix for a single slab	412
		14.6 The etalon	415
		14.7 A thin metal film	415
		14.8 A stratified medium of multiple slabs	417
		14.9 Fiber Bragg gratings	420
		14.10 Analysis of multi-layer structures by impedance techniques	420
		14.11 Photonic crystals	421
		14.12 Periodic lens sequences	425
		14.13 The identical-thin-lens waveguide	426
		14.14 The propagation of rays in mirror resonators	428
		14.15 The propagation of rays in isotropic media with refractive-index gradients	431
		14.16 Media with a Gaussian radial index variation	433
		14.17 The propagation of spherical waves	434
		14.18 Problems	436
		Kelerences	437
	15	The optics of Gaussian beams	438
		15.1 Introduction	438

х		Contents	
	15.2	Beam-wave solutions of the wave equation	438
	15.3	Higher-order modes	445
	15.4	Transformation of Gaussian beams by general optical systems	454
	15.5	The transformation of a Gaussian beam by a lens	459
	15.6	Gaussian beams in lens waveguides	462
	15.7	The propagation of a Gaussian beam in a medium with a quadratic refractive-index profile	463
	15.8	The propagation of Gaussian beams in media with spatial gain or absorption variations	464
	15.9	Propagation in a medium with a parabolic gain profile	465
	15.10	Gaussian beams in plane and spherical mirror resonators	467
	15.11	Symmetrical resonators	469
	15.12	Examples of resonator design	471
	15.13	Diffraction losses	474
	15.14	Unstable resonators	475
	15.15	Other beam waves	477
	15.16	Problems	478
	Refer	ences	479
16	Optical	fibers and waveguides	481
	16.1	Introduction	481
	16.2	Ray theory of cylindrical optical fibers	481
	16.3	Ray theory of a dielectric-slab guide	490
	16.4	The Goos-Hänchen shift	491
	16.5	Wave theory of the dielectric-slab guide	494
	16.6	P waves in the slab guide	495
	16.7	Dispersion curves and field distributions in a slab waveguide	498
	16.8	S waves in the slab guide	502
	16.9	Practical slab guide geometries	503
	16.10	Cylindrical dielectric waveguides	504
	16.11	Modes and field patterns	511
	16.12	The weakly guiding approximation	512
	16.13	Mode patterns	514
	16.14	Cutoff frequencies	518
	16.15	Multimode fibers	520
	16.16	Fabrication of optical fibers	521
	16.17	Dispersion in optical fibers	524
	16.18	Holey fibers	527
	16.19	Solitons	528
	16.20	Erbium-doped fiber amplifiers	529
	16.21	Coupling optical sources and detectors to fibers	532
	16.22	Problems	535
	Refer	ences	536

xi	Contents	
	The entire of anicetyonic modia	20
	17.1 Introduction 5	29 20
	17.2 The dielectric tensor	30
	17.3 Stored electromagnetic energy in anisotropic media	42
	17.4 Propagation of monochromatic plane waves in anisotropic media	43
	17.5 The two possible directions of D for a given wave vector are orthogonal 54	45
	17.6 Angular relationships involving D, E, H, k, and the Poynting vector S 54	47
	17.7 The indicatrix 54	48
	17.8 Uniaxial crystals 5.	50
	17.9 Index surfaces 5.	53
	17.10 Other surfaces related to the uniaxial indicatrix 5.	55
	17.11 Huygenian constructions 5.	57
	17.12 Retardation 50	60
	17.13 Biaxial crystals 50	65
	17.14 Intensity transmission through polarizer/waveplate/polarizer	
	combinations 50	68
	17.15 The Jones calculus 57	70
	17.16 Mueller calculus 5	76
	17.17 Problems 5	78
	References 5	78
	The electro-optic and acousto-optic effects and modulation of light beams 5	80
	18.1Introduction to the electro-optic effect54	80
	18.2The linear electro-optic effect54	81
	18.3The quadratic electro-optic effect50	87
	18.4 Longitudinal electro-optic modulation 55	88
	18.5 Transverse electro-optic modulation 59	90
	18.6 Electro-optic amplitude modulation 55	95
	18.7 Electro-optic phase modulation 55	97/ 00
	18.8 High-frequency waveguide electro-optic modulators	99 02
	18.9 Other high-frequency electro-optic devices 6	J3 06
	18.10 Electro-absorption modulators	07
	18.12 A cousto optic bealli dellectors)/ //
	18.12 Applications of acousto optic modulators	JO 14
	18.14 Construction and materials for acousto ontic modulators	14
	18.15 Problem 6	20
	References 6	20
		20
	Introduction to nonlinear processes 62	22
	19.1 Introduction 6.	22
	19.2Anharmonic potentials and nonlinear polarization6.	22
	19.3Nonlinear susceptibilities and mixing coefficients6.	26
	19.4Second-harmonic generation6.	29

xii	Contents	
	19.5 The linear electro-optic effect	631
	19.6 Parametric and other nonlinear processes	633
	19.7 Macroscopic and microscopic susceptibiliti	es 634
	19.8 Problem	638
	References	638
	20 Wave propagation in nonlinear media	640
	20.1 Introduction	640
	20.2 Electromagnetic waves and nonlinear polar	ization 640
	20.3 Second-harmonic generation	645
	20.4 The effective nonlinear coefficient d_{eff}	646
	20.5 Phase matching	649
	20.6 Beam walk-off and 90° phase matching	653
	20.7 Second-harmonic generation with Gaussian	i beams 654
	20.8 Up-conversion and difference-frequency ge	eneration 660
	20.9 Optical parametric amplification	661
	20.10 Parametric oscillators	665
	20.11 Parametric-oscillator tuning	668
	20.12 Phase conjugation	670
	20.13 Optical bistability	6/4 (70
	20.14 Practical details of the use of crystals for no	onlinear applications 6/9
	20.15 Problems	680
	Keterences	681
	21 Detection of optical radiation	684
	21.1 Introduction	684
	21.2 Noise	684
	21.3 Detector performance parameters	692
	21.4 Practical characteristics of optical detectors	693
	21.5 Thermal detectors	715
	21.6 Detection limits for optical detector system	s 717
	21.7 Coherent detection	725
	21.8 The bit-error rate	730
	21.9 Problems	733
	References	734
	22 Coherence theory	736
	22.1 Introduction	736
	22.2 Square-law detectors	736
	22.3 The analytic signal	737
	22.4 Correlation functions	741
	22.5 Temporal coherence	744
	22.6 Spatial coherence	748
	22.7 Spatial coherence with an extended source	751

 22.8 Propagation laws of partial coherence 22.9 Propagation from a finite plane surface 22.10 The van Cittert–Zernike theorem 	753 756 761 763 766 767
 22.8 Propagation laws of partial coherence 22.9 Propagation from a finite plane surface 22.10 The van Cittert–Zernike theorem 	 753 756 761 763 766 767
 22.9 Propagation from a finite plane surface 22.10 The van Cittert–Zernike theorem 22.11 The van tick at the finite plane surface 	756 761 763 766 767
22.10 The van Cittert–Zernike theorem	761 763 766 767
	763 766 767
22.11 The spatial coherence of a quasi-monochromatic, uniform, spatially	763 766 767
incoherent circular source	766 767
22.12 Intensity-correlation interferometry	767
22.13 Intensity fluctuations	, . ,
22.14 Photon statistics	771
22.15 The Hanbury Brown–Twiss interferometer	776
22.16 The Hanbury Brown–Twiss experiment with photon-count correlations	778
22.17 Squeezed light	780
References	/81
23 Laser applications	783
23.1 Optical communication systems	783
23.2 Optical amplification and wavelength-division multiplexing	788
23.3 Holography	797
23.4 Medical applications of lasers	806
23.5 Laser weapons	809
23.6 Laser isotope separation	809
23.7 Laser plasma generation and fusion	813
Kelefences	810
Appendix 1 Optical terminology	821
Appendix 2 The δ -function	824
Appendix 3 Black-body radiation formulas	826
Appendix 4 <i>RLC</i> circuits	828
Appendix 5 Storage and transport of energy by electromagnetic fields	831
Appendix 6 The reflection and refraction of a plane electromagnetic wave at a boundary between two isotropic media of different refractive indices	834
Appendix 7 The vector differential equation for light rays	837
Appendix 8 Symmetry properties of crystals and the 32 crystal classes	841
Appendix 9 Tensors	845
Appendix 10 Bessel-function relations	848
Appendix 11 Green's functions	849
Appendix 12 Recommended values of some physical constants Index	852 853

Preface to the Second Edition

The author of a text generally feels obligated to explain the reasons for his or her writing. This is a matter of tradition as it provides an opportunity for explaining the development and philosophy of the text, its subject matter and intended audience, and acknowledges the help that the author has received. In the case of a second edition of a text, as is the case here, a new preface provides an opportunity for the author to explain the revisions of the second edition and to further acknowledge help from colleagues. I hope to accomplish these tasks briefly here.

The first edition of this text grew over many years out of notes that I had developed for courses at the senior undergraduate and beginning graduate student level at the University of Manchester, Cornell University, and the University of Maryland, College Park. These courses covered many aspects of laser physics and engineering, the practical aspects of optics that pertain to an understanding of these subjects, and a discussion of related phenomena and devices whose importance has grown from the invention of the laser in 1960. These include nonlinear optics, electro-optics, acousto-optics, and the devices that take practical advantage of these phenomena. The names given to the fields that encompass such subject matter have included laser physics, optical electronics, optoelectronics, photonics, and quantum electronics. The fundamentals of these subjects have not changed significantly in the years that have intervened since the publication of the first edition. However, there have been important technological advances that need discussion, as well as new laser applications. A few important new topic areas now included are fiber lasers, aberrations in optical systems, stratified media, photonic crystals, periodic poling for phase matching, and new methods for obtaining laser pulses of very short duration. Expanded discussion is provided about diode-pumped solid-state lasers, free-electron lasers, semiconductor physics, semiconductor lasers, photon statistics, squeezed light, and analysis of polarized light.

This is a textbook, not a research monograph, although I have attempted to provide enough detail to help researchers obtain the background necessary for exploration of more specialized literature. After teaching this material for over 40 years I hope that I have found helpful ways to make the subject understandable to students. I have certainly benefited greatly from their feedback, which has contributed to the changes in this second edition.

Although a comprehensive understanding of the laser and associated phenomena requires a quantum-mechanical treatment, almost all aspects of laser operation and important related phenomena can be explained well classically. Therefore, this text requires no knowledge of quantum mechanics, although a background in electromagnetic theory at the undergraduate level is desirable for a greater understanding. Most electrical engineering majors do not take a course in quantum mechanics until they reach graduate level, and many physics majors will not have acquired sufficient quantum mechanics knowledge at

XV

Preface to the Second Edition

the undergraduate level for this to make a meaningful contribution to better understanding in a study of lasers and electro-optics.

For all the above reasons this text should be suitable for senior undergraduate and beginning graduate students in electrical engineering or physics. It should also prove useful to other engineers or chemists who use lasers and electro-optic devices.

The text is broken up into two principal parts. Chapters 1–12 discuss the basic physics and engineering of lasers of all kinds, beginning with a discussion of the fundamental physics of the stimulated emission process and laser amplifiers. This is followed by chapters on laser resonators and the characteristics of laser radiation and methods for controlling it. There are succeeding chapters that cover optically pumped insulating crystal lasers, atomic gas lasers, and molecular gas lasers of various kinds including gas transport, gas dynamics and chemically pumped varieties, and tunable lasers. The first section of the book concludes with a chapter on semiconductor lasers that begins with a review of the basic physics necessary for their understanding.

The second part of the text covers various issues of relevance to lasers and electrooptics, including optical analysis and design techniques, the optics of Gaussian beams, laser resonators, and anisotropic crystalline materials. There are chapters on optical fibers, electro-optic and acousto-optic devices, the fundamentals of nonlinear optics, and application of nonlinear optics in harmonic generation, parametric processes, phase conjugation, and optical bistability. The text concludes with chapters on optical detectors and the detection process, coherence theory, and applications of lasers.

I have found that Chapters 1–12 provide sufficient material for a one semester course on lasers, with some applications from Chapter 23 included. Chapters 5 and 13–18, together with Chapter 22, form the basis of a one-semester course on optical design, electro-optic devices, and optical detectors. I draw on the somewhat more difficult material in Chapters 19–21 as reference material in both the one-semester courses just mentioned, and also as adjunct material in more advanced graduate courses.

I have been an experimentalist in the optics and laser business for over four decades. I have always found the laser itself a fascinating device that provides a teaching vehicle for discussing many fundamental physics concepts as well as practical aspects of optical design. I have always tried to introduce practical details of real lasers into my classes as early as a treatment of some of the associated fundamentals permits. This should be apparent in the current text where I digress in Chapter 3 into a fairly detailed practical discussion of two historically important lasers, even though contextually a fuller discussion of these devices could be left until later. I believe that this makes pedagogical sense as students get a glimpse of where they are headed. Throughout the text I have attempted to provide full details of important derivations, and provide practical examples from the literature on the design, construction, and performance characteristics of lasers and electro-optic devices.

In developing a sound approach to teaching the material in this text to many students over more than four decades I have drawn inevitably on the work of many others. There have been many other books that cover material that is shared in common with the current one. What is different between this and related texts is not so much the analytic treatment of common subject matter, but the specific choice of material presentation sequence, and xvii

Cambridge University Press & Assessment 978-0-521-86029-1 — Lasers and Electro-optics Christopher C. Davis Frontmatter More Information

Preface to the Second Edition

assorted explanations. As it is said, "there is nothing new under the sun," so it is not the intent of this author to claim that the treatment of particular topics in the current text is necessarily unique. Different authors impart their own slant to the same subject matter: sometimes their treatments converge, particularly when there is one especially good way of explanation that is valid. I have attempted in every case to provide references to the original literature from which I have benefited in my writing, and I apologize for any inadvertent omissions. There is a vast literature on the subjects covered and would be it impossible to list all the important published work that has added to our knowledge. I have attempted to list key early work in each area covered, since use of the *Science Citations Index*¹ will in this way provide links to almost all the work in an area.

Over the course of many years I have learned much from my contacts in the classroom, office, and research laboratory, and at conferences. I am indebted to numerous past and present colleagues and students for their intellectual stimulation, collaboration in research, advice, provision of material, and feedback on early versions of the current text that have contributed greatly to the finished product. I would like to thank especially my past and present faculty colleagues Quirino Balzano, Kyuman Cho, Mario Dagenais, Julius Goldhar, Ping-Tong Ho, the late Urs Hochuli, Terry King, Chi Lee, Ross McFarlane, Stuart Milner, Ian Smith, Igor Smolyaninov; and finally George Wolga who gave me valuable help at the very beginning of this work. I am especially grateful to Professor Thomas Murphy for his helpful comments on how to treat the topic of semiconductor lasers, which just on its own could fill many volumes. My graduate students and post-doctoral research associates have over several years provided help and advice that have helped me greatly. I am particularly grateful to Navik Agrawal, David Coleman, Mohammed Eslami, Ehren Hwang, Jonathan Ko, Jaime Llorca, Billy Nelson, John Rzasa, Tommy Shen, and Chensheng Wu, for their current help with my research that has provided the time to finish this new edition. I am most grateful to Joan Hamilton and Nono Kusuma for drawing many of the diagrams and to Dave Mazzoni and Sarah Fish for help with additional diagrams.

I appreciate the patience of several editors at Cambridge University Press in waiting for completion of this second edition, and for accepting ongoing excuses as to why it was not completed earlier. I am most grateful to Patricia Keehn for her expert and careful computer typesetting work using T_EX over enormous numbers of revisions of the first edition.²

Most of all, I am indebted to my family, especially my wife Mary, for their unfailing love and support over the course of my career.

Christopher C. Davis

College Park, Maryland November 2013

¹ Part of the Web of Science, a subscription data base that is widely available: http://thomsonreuters.com/ web-of-science/

² In most cases where curves showing the parametric variation of phenomena discussed in the text are given these have been calculated from scratch using Mathcad (©Mathsoft, Inc.) The entire text has been typeset using Donald Knuth's T_EX: *The T_EXbook*, Addison-Wesley, Reading, MA, 1984. T_EX is a trademark of the American Mathematical Society.