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LECTURE 1

Non-commutative probability spaces and
distributions

Since we are interested in the combinatorial aspects of free probabil-
ity, we will focus on a framework which is stripped of its analytical
structure (i.e. where we ignore the metric or topological structure of
the spaces involved). The reason for the existence of this monograph
is that even so (without analytical structure), the phenomenon of free
independence is rich enough to be worth studying. The interesting
combinatorial features of this phenomenon come from the fact that
we will allow the algebras of random variables to be non-commutative.
This certainly means that we have to consider a generalized concept of
“random variable” (since in the usual meaning of the concept, where
a random variable is a function on a probability space, the algebras of
random variables would have to be commutative).

Non-commutative probability spaces

Definition 1.1. (1) A non-commutative probability space
(A, ϕ) consists of a unital algebra A over C and a unital linear func-
tional

ϕ : A → C; ϕ(1A) = 1.

The elements a ∈ A are called non-commutative random variables
in (A, ϕ). Usually, we will skip the adjective “non-commutative” and
just talk about “random variables a ∈ A.”

An additional property which we will sometimes impose on the
linear functional ϕ is that it is a trace, i.e. it has the property that

ϕ(ab) = ϕ(ba), ∀ a, b ∈ A.

When this happens, we say that the non-commutative probability space
(A, ϕ) is tracial.

(2) In the framework of part (1) of the definition, suppose that A is
a ∗-algebra, i.e. that A is also endowed with an antilinear ∗-operation
A � a �→ a∗ ∈ A, such that (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A.
If we have that

ϕ(a∗a) ≥ 0, ∀ a ∈ A,
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4 1. NON-COMMUTATIVE PROBABILITY SPACES AND DISTRIBUTIONS

then we say that the functional ϕ is positive and we will call (A, ϕ) a
∗-probability space.

(3) In the framework of a ∗-probability space we can talk about:
• selfadjoint random variables, i.e. elements a ∈ A with the prop-

erty that a = a∗;
• unitary random variables, i.e. elements u ∈ A with the property

that u∗u = uu∗ = 1;
• normal random variables, i.e. elements a ∈ A with the property

that a∗a = aa∗.

In these lectures we will be mostly interested in ∗-probability spaces,
since this is the framework which provides us with a multitude of excit-
ing examples. However, plain non-commutative probability spaces are
also useful, because sometimes we encounter arguments relying solely
on the linear and multiplicative structure of the algebra involved –
these arguments are more easily understood when the ∗-operation is
ignored (even if it happened that the algebra had a ∗-operation on it).

Remarks 1.2. Let (A, ϕ) be a ∗-probability space.
(1) The functional ϕ is selfadjoint, i.e. it has the property that

ϕ(a∗) = ϕ(a), ∀a ∈ A.

Indeed, since every a ∈ A can be written uniquely in the form a = x+iy
where x, y ∈ A are selfadjoint, the latter equation is immediately seen
to be equivalent to the fact that ϕ(x) ∈ R for every selfadjoint element
x ∈ A. This in turn is implied by the positivity of ϕ and the fact that
every selfadjoint element x ∈ A can be written in the form x = a∗a−b∗b
for some a, b ∈ A (take e.g. a = (x + 1A)/2, b = (x − 1A)/2).

(2) Another consequence of the positivity of ϕ is that we have:

|ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b), ∀ a, b ∈ A. (1.1)

The inequality (1.1) is commonly called the Cauchy–Schwarz in-
equality for the functional ϕ. It is proved in exactly the same way as
the usual Cauchy–Schwarz inequality (see Exercise 1.21 at the end of
the lecture).

(3) If an element a ∈ A is such that ϕ(a∗a) = 0, then the Cauchy–
Schwarz inequality (1.1) implies that ϕ(ba) = 0 for all b ∈ A (hence
a is in a certain sense a degenerate element for the functional ϕ). We
will use the term “faithful” for the situation when no such degener-
ate elements exist, except for a = 0. That is, we make the following
definition.
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NON-COMMUTATIVE PROBABILITY SPACES 5

Definition 1.3. Let (A, ϕ) be a ∗-probability space. If we have
the implication:

a ∈ A, ϕ(a∗a) = 0 ⇒ a = 0,

then we say that the functional ϕ is faithful.

Examples 1.4. (1) Let (Ω,Q, P ) be a probability space in the
classical sense, i.e. Ω is a set, Q is a σ-field of measurable subsets of Ω
and P : Q → [0, 1] is a probability measure. Let A = L∞(Ω, P ), and
let ϕ be defined by

ϕ(a) =

∫

Ω

a(ω) dP (ω), a ∈ A.

Then (A, ϕ) is a ∗-probability space (the ∗-operation on A is the oper-
ation of complex-conjugating a complex-valued function). The random
variables appearing in this example are thus genuine random variables
in the sense of “usual” probability theory.

The reader could object at this point that the example presented in
the preceding paragraph only deals with genuine random variables that
are bounded, and thus misses for instance the most important random
variables from usual probability – those having a Gaussian distribution.
We can overcome this problem by replacing the algebra L∞(Ω, P ) with:

L∞−(Ω, P ) :=
⋂

1≤p<∞

Lp(Ω, P ).

That is, we can make A become the algebra of genuine random variables
which have finite moments of all orders. (The fact that L∞−(Ω, P ) is
indeed closed under multiplication follows by an immediate application
of the Cauchy–Schwarz inequality in L2(Ω, P ) – cf. Exercise 1.22 at
the end of the lecture.) In this enlarged version, our algebra of random
variables will then contain the Gaussian ones.

Of course, one could also point out that in classical probability there
are important cases of random variables which do not have moments
of all orders. These ones, unfortunately, are beyond the scope of the
present set of lectures – we cannot catch them in the framework of
Definition 1.1.

(2) Let d be a positive integer, let Md(C) be the algebra of d×d com-
plex matrices with usual matrix multiplication, and let tr : Md(C) → C
be the normalized trace,

tr(a) =
1

d
·

d∑
i=1

αii for a = (αij)
d
i,j=1 ∈ Md(C). (1.2)
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6 1. NON-COMMUTATIVE PROBABILITY SPACES AND DISTRIBUTIONS

Then (Md(C), tr) is a ∗-probability space (where the ∗-operation is
given by taking both the transpose of the matrix and the complex
conjugate of the entries).

(3) The above examples (1) and (2) can be “put together” into
one example where the algebra consists of all the d × d matrices over
L∞−(Ω, P ) :

A = Md( L∞−(Ω, P ) ),

and the functional ϕ on it is

ϕ(a) :=

∫
tr(a(ω)) dP (ω), a ∈ A.

The non-commutative random variables obtained here are thus ran-
dom matrices over (Ω,Q, P ). (Observe that this example is obtained
by starting with the space in Example 1.4.1 and by performing the
d × d matrix construction described in Exercise 1.23.) We will elabo-
rate more on random matrix examples later (cf. Lectures 22 and 23).

(4) Let G be a group, and let CG denote its group algebra. That
is, CG is a complex vector space having a basis indexed by the elements
of G, and where the operations of multiplication and ∗-operation are
defined in the natural way:

CG :=
{∑

g∈G

αgg | αg ∈ C, only finitely many αg �= 0
}

,

with(∑
αgg

)
·
(∑

βhh
)

:=
∑
g,h

αgβh(gh) =
∑
k∈G

( ∑
g,h: gh=k

αgβh

)
k,

and (∑
αgg

)∗
:=

∑
ᾱgg

−1.

Let e be the unit element of G. The functional τG : CG → C defined
by the formula

τG

(∑
αgg

)
:= αe

is called the canonical trace on CG. Then (CG, τG) is a ∗-probability
space. It is easily verified that τG is indeed a trace (in the sense of
Definition 1.1.1) and is faithful (in the sense of Definition 1.3).

(5) Let H be a Hilbert space and let B(H) be the algebra of all
bounded linear operators on H. This is a ∗-algebra, where the adjoint
a∗ of an operator a ∈ B(H) is uniquely determined by the fact that

〈aξ, η〉 = 〈ξ, a∗η〉, ∀ ξ, η ∈ H.
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∗-DISTRIBUTIONS (CASE OF NORMAL ELEMENTS) 7

Suppose that A is a unital ∗-subalgebra of B(H) and that ξo ∈ H is
a vector of norm one (||ξo|| := 〈ξo, ξo〉1/2 = 1). Then we get an example
of ∗-probability space (A, ϕ), where ϕ : A → C is defined by:

ϕ(a) := 〈aξo, ξo〉, a ∈ A. (1.3)

A linear functional as defined in (1.3) is usually called a vector-state
(on the algebra of operators A).

Exercise 1.5. (1) Verify that in each of the examples described
in 1.4, the functional considered as part of the definition of the ∗-
probability space is indeed positive.

(2) Show that in Examples 1.4.1–1.4.4, the functional considered as
part of the definition of the ∗-probability space is a faithful trace.

Definition 1.6. (1) A morphism between two ∗-probability
spaces (A, ϕ) and (B, ψ) is a unital ∗-algebra homomorphism Φ : A →
B with the property that ψ ◦ Φ = ϕ.

(2) In the case when (B, ψ) is a ∗-probability space of the special
kind discussed in Example 1.4.5, we will refer to a morphism Φ from
(A, ϕ) to (B, ψ) as a representation of (A, ϕ). So, to be precise, giving
a representation of (A, ϕ) amounts to giving a triple (H, Φ, ξo) where
H is a Hilbert space, Φ : A → B(H) is a unital ∗-homomorphism, and
ξo ∈ H is a vector of norm one, such that ϕ(a) = 〈Φ(a)ξo, ξo〉 for all
a ∈ A.

Remark 1.7. The ∗-probability spaces appearing in Examples
1.4.1, 1.4.2 and 1.4.4 have natural representations, on Hilbert spaces
related to how the algebras of random variables were constructed – see
Exercise 1.25 at the end of the lecture.

∗-distributions (case of normal elements)

A fundamental concept in the statistical study of random variables is
that of distribution of a random variable. In the framework of a ∗-
probability space (A, ϕ), the appropriate concept to consider is the ∗-
distribution of an element a ∈ A. Roughly speaking, the ∗-distribution
of a has to be some “standardized” way of reading the values of ϕ on
the unital ∗-subalgebra generated by a.

We start the discussion of ∗-distributions with the simpler case
when a ∈ A is normal (i.e. is such that a∗a = aa∗). In this case the
unital ∗-algebra generated by a is

A := span{ak(a∗)l | k, l ≥ 0}; (1.4)

the job of the ∗-distribution of a must thus be to keep track of the
values ϕ( ak(a∗)l ), where k and l run in N ∪ {0}. The kind of object
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8 1. NON-COMMUTATIVE PROBABILITY SPACES AND DISTRIBUTIONS

which does this job and which we prefer to have whenever possible is
a compactly supported probability measure on C.

Definition 1.8. Let (A, ϕ) be a ∗-probability space and let a be a
normal element of A. If there exists a compactly supported probability
measure µ on C such that

∫
zk z̄l dµ(z) = ϕ(ak(a∗)l), for every k, l ∈ N, (1.5)

then this µ is uniquely determined and we will call the probability
measure µ the ∗-distribution of a.

Remarks 1.9. (1) The fact that a compactly supported probabil-
ity measure µ on C is uniquely determined by how it integrates func-
tions of the form z �→ zkz̄l with k, l ∈ N is an immediate consequence
of the Stone–Weierstrass theorem. Or more precisely: due to Stone–
Weierstrass, µ is determined as a linear functional on the space C(K)
of complex-valued continuous functions on K, where K is the support
of µ; it is then well known that this in turn determines µ uniquely.

(2) It is not said that every normal element in a ∗-probability space
has to have a ∗-distribution in the sense defined above. But this turns
out to be true in a good number of important examples. Actually,
this is always true when we look at ∗-probability spaces which have a
representation on a Hilbert space, in the sense of the above Definition
1.6 (see Corollary 3.14 in Lecture 3); and civilized examples do have
representations on Hilbert spaces – see Lecture 7.

Remark 1.10. (The case of a selfadjoint element)
Let (A, ϕ) be a ∗-probability space, and let a be a selfadjoint element
of A (that is, we have a = a∗, which implies in particular that a is
normal). Suppose that a has ∗-distribution µ, in the sense of Definition
1.8. Then µ is supported in R. Indeed, we have

∫

C
| z − z̄ |2 dµ(z) =

∫

C
(z − z̄ )(z̄ − z) dµ(z)

=

∫

C
2zz̄ − z2 − z̄2 dµ(z)

= 2ϕ(aa∗) − ϕ(a2) − ϕ( (a∗)2 ) = 0.

Since z �→ | z − z̄ |2 is a continuous non-negative function, we must
have that z − z̄ vanishes on the support supp(µ) of our measure, and
hence:

supp(µ) ⊂ {z ∈ C | z = z̄} = R.
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∗-DISTRIBUTIONS (CASE OF NORMAL ELEMENTS) 9

So in this case µ is really a measure on R, and Equation (1.5) is better
written in this case as∫

tp dµ(t) = ϕ(ap), ∀ p ∈ N. (1.6)

Conversely, suppose that we have a compactly supported measure µ
on R such that (1.6) holds. Then clearly µ is the ∗-distribution of a in
the sense of Definition 1.8 (because

∫
zkz̄l dµ(z) becomes

∫
tk+l dµ(t),

while ϕ( ak(a∗)l ) becomes ϕ(ak+l)).
The conclusion of this discussion is that for a selfadjoint element

a ∈ A it would be more appropriate to talk about the distribution
of a (rather than talking about its ∗-distribution); this is defined as a
compactly supported measure on R such that (1.6) holds. But there
is actually no harm in treating a as a general normal element, and in
looking for its ∗-distribution, since in the end we arrive at the same
result.

Examples 1.11. (1) Consider the framework of Example 1.4.1,
where the algebra of random variables is L∞(Ω, P ). Let a be an element
in A; in other words, a is a bounded measurable function, a : Ω → C.
Let us consider the probability measure ν on C which is called “the
distribution of a” in usual probability; this is defined by

ν(E) = P ( {ω ∈ Ω : a(ω) ∈ E} ), E ⊂ C Borel set. (1.7)

Note that ν is compactly supported. More precisely, if we choose a
positive r such that |a(ω)| ≤ r, ∀ ω ∈ Ω, then it is clear that ν is
supported in the closed disc centered at 0 and of radius r.

Now, a is a normal element of A (all the elements of A are normal,
since A is commutative). So it makes sense to place a in the framework
of Definition 1.8. We will show that the above measure ν is exactly the
∗-distribution of a in this framework.

Indeed, Equation (1.7) can be read as∫

C
f(z) dν(z) =

∫

Ω

f( a(ω) ) dP (ω), (1.8)

where f is the characteristic function of the set E. By going through the
usual process of taking linear combinations of characteristic functions,
and then doing approximations of a bounded measurable function by
step functions, we see that Equation (1.8) actually holds for every
bounded measurable function f : C → C. (The details of this are
left to the reader.) Finally, let k, l be arbitrary non-negative integers,
and let r > 0 be such that |a(ω)| ≤ r for every ω ∈ Ω. Consider a
bounded measurable function f : C → C such that f(z) = zkz̄l for
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10 1. NON-COMMUTATIVE PROBABILITY SPACES AND DISTRIBUTIONS

every z ∈ C having |z| ≤ r. Since ν is supported in the closed disc of
radius r centered at 0, it follows that∫

C
f(z) dν(z) =

∫

C
zkz̄l dν(z),

and, consequently, that∫

Ω

f( a(ω) ) dP (ω) =

∫

Ω

a(ω)k a(ω)
l
dP (ω) = ϕ( ak(a∗)l ).

Thus for this particular choice of f , Equation (1.8) gives us that∫

C
zkz̄l dν(z) = ϕ( ak(a∗)l ),

and this is precisely (1.5), implying that ν is the ∗-distribution of a in
the sense of Definition 1.8.

(2) Consider the framework of Example 1.4.2, and let a ∈ Md(C)
be a normal matrix. Let λ1, . . . , λd be the eigenvalues of a, counted
with multiplicities. By diagonalizing a we find that

tr(ak(a∗)l) =
1

d

d∑
i=1

λk
i λ̄

l
i, k, l ∈ N.

The latter quantity can obviously be written as
∫

zkz̄l dµ(z), where

µ :=
1

d

d∑
i=1

δλi
(1.9)

(δλ stands here for the Dirac mass at λ ∈ C). Thus it follows that a
has a ∗-distribution µ, which is described by Equation (1.9). Usually
this µ is called the eigenvalue distribution of the matrix a.

One can consider the question of how to generalize the above fact
to the framework of random matrices (as in Example 1.4.3). It can be
shown that the formula which appears in place of (1.9) in this case is

µ :=
1

d

d∑
i=1

∫

Ω

δλi(ω) dP (ω), (1.10)

where a = a∗ ∈ Md(L
∞−(Ω, P )), and where λ1(ω) ≤ · · · ≤ λd(ω) are

the eigenvalues of a(ω), ω ∈ Ω. (Strictly speaking, Equation (1.10)
requires an extension of the framework used in Definition 1.8, since
the resulting averaged eigenvalue distribution µ will generally not have
compact support. See Lecture 22 for more details about this.)

Our next example will be in connection to a special kind of element
in a ∗-probability space, called a Haar unitary.
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