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Introduction

1.1 Disperse multiphase flows

The majority of the equipment used in the chemical process industry employs multiphase

flow. Bubble columns, fluidized beds, flame reactors, and equipment for liquid–liquid

extraction, for solid drying, and size enlargement or reduction are common examples. In

order to efficiently design, optimize, and scale up industrial systems, computational tools

for simulating multiphase flows are very important. Polydisperse multiphase flows are also

common in other areas, such as fuel sprays in auto and aircraft engines, brown-out condi-

tions in aerospace vehicles and particulate flows occurring in the environment. Although

at first glance the multifarious industrial and environmental multiphase flows appear to

be very different from each other, they have a very important common element: it is pos-

sible to identify a continuous phase and a disperse phase (usually with a distribution of

characteristic “particle sizes”).

Historically the development of the theoretical framework and of computational mod-

els for disperse multiphase flows has focused on two different aspects: (i) the evolution of

the disperse phase (e.g. breakage and coalescence of bubbles or droplets, particle–particle

collisions, etc.) and (ii) multiphase fluid dynamics. The first class of models is mainly

concerned with the description of the disperse phase, and is based on the solution of the

spatially homogeneous1 population balance equation (PBE). A PBE is a continuity state-

ment written in terms of a number density function (NDF), which will be described in detail

in Chapter 2. The NDF contains information about how the population constituted by the

discrete elements of the disperse phase is distributed over certain characteristic properties

that determine, for example, product quality. For example, in crystallization the final qual-

ity of the crystals very often depends on the crystal-size distribution (CSD). The CSD (or

NDF) defines how the population of crystals is distributed over crystal size, and the PBE is

a partial integro-differential equation that defines the evolution of the NDF, as described by

Ramkrishna (2000) and Randolph & Larson (1971). Generally these models consist of a

PBE coupled with spatially homogeneous mass and energy balances, and can be profitably

used in modeling, design, and scale-up of process equipment, and in the development of

1In the more sophisticated treatments, spatial inhomogeneities are modeled by connected “zones” or regions of

space that are assumed to be homogeneous. The resulting population-balance equation (PBE) does not explicitly

account for local variations in the flow field.

1

www.cambridge.org/9780521858489
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-85848-9 — Computational Models for Polydisperse Particulate
and Multiphase Systems
Daniele L. Marchisio , Rodney O. Fox
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Introduction

control strategies for particulate systems (Chiu & Christofides, 1999; Crowley et al., 2000;

Nagy, 2009).

However, in many industrial and environmental applications the fluid-dynamic

interactions between the disperse and continuous phases are also very important,

and much research effort has focused on these aspects of the problem (e.g. Delnoij et al.,

1997; Fox, 2012; Gavi et al., 2007; Gerber & Mousavi, 2007; Lain et al., 2002; Laurent &

Massot, 2001; Marchisio & Fox, 2007; Monahan & Fox, 2007; Petitti et al., 2010; Prat &

Ducoste, 2006; Rigopoulos, 2010; Sanyal et al., 2005; Venneker et al., 2002). For exam-

ple, in gas–solid systems the application of the kinetic theory of gases to granular flows and

the development of multiphase computational models have led to a deeper understanding

of these issues (Gidaspow, 1994; Goldhirsch, 2003; Jenkins & Mancini, 1989). Gener-

ally these transport-phenomena-based models consist of spatially inhomogeneous mass,

momentum, and energy (thermal and granular) balances between the disperse phase and the

continuous phase, and spatial dependences are handled by using a finite-volume approach

(Leveque, 2002) in the context of computational fluid dynamics (CFD). Important indus-

trial examples of such flows include fluidized beds and riser flows, slurry-flow reactors,

and bubble columns. In all of these examples, the coupling due to mass, momentum, and

energy exchange between the disperse and continuous phases results in flow dynamics that

are distinctly different than that observed in single-phase flows. Thus, the CFD models

used for describing the fluid dynamics of disperse multiphase flows usually involve multi-

ple continuity and momentum equations that are tightly coupled through phase-interaction

terms (Drew & Passman, 1999; van der Hoef et al., 2008; Ishii, 1975; Portela & Oliemans,

2006). For polydisperse multiphase flows, the situation becomes more complex because it

is necessary to describe the “particle-size” distribution of the disperse phase (De Chaise-

martin et al., 2009; Fan et al., 2004; Fox, 2007; Riber et al., 2009), as well as the coupling

with the continuous phase for particles of different sizes. One of the primary goals of the

present work is to present a systematic modeling framework for accomplishing this task.

In general, the first class of models mentioned above is able to describe the evolution

of the NDF that characterizes the disperse phase. For example, if this approach is applied

to crystallization problems, it is possible to describe the evolution of the CSD in a crystal-

lizer working under certain operating conditions, taking into account all possible physical

and chemical processes such as nucleation, molecular growth, aggregation, and breakage.

However, these models are unable to take into account spatial gradients of properties and

how they relate to the continuous or disperse phases, fluid-dynamic interactions between

crystals and the continuous phase, and interactions among the crystals themselves. As a

consequence, the first class of models is unable to predict the effect of local flow interac-

tions on the evolution of the CSD. On the other hand, the second class of models is capable

of describing detailed fluid-dynamic interactions, but for simplicity often assumes a con-

stant (or even monodisperse) CSD. The principal aim of this book is to present the common

underlying theory and, through the introduction of appropriate computational methods, to

create a bridge between the two approaches. The resulting CFD-based computational mod-

els can then be used to solve a large variety of polydisperse particulate and multiphase flow

problems.

A working definition of polydisperse multiphase flows

For the purposes of this book, it will be useful to have a clear definition of what is meant

by disperse and polydisperse in the context of multiphase flows. By disperse, we mean

that one or more of the phases is composed of clearly identifiable discrete entities such

as solid particles, drops, or bubbles. By polydisperse, we mean that the properties of the
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1.2 Two example systems 3

disperse-phase entities can be different for each entity (e.g. particles with different mass,

composition, or temperature). For example, fuel sprays have a region near the nozzle where

the liquid jet is not disperse, followed by a region after breakup of the primary jet that is

composed of individual droplets. The latter region would be considered a polydisperse mul-

tiphase flow and could be modeled using the methods described in this book. In contrast,

bubble-column flows, for example, can be entirely monodisperse because all of the bubbles

have (approximately) the same properties (e.g. bubble diameter). In practice, monodisperse

multiphase flows are relatively rare and, hence, it will be important to have a modeling

framework that naturally accounts for polydispersity.

Another important manifestation of “polydispersity” is the presence of disperse-phase

entities (even those with identical physical properties) with different velocities. The reader

familiar with the kinetic theory of molecular gases will recognize this type of polydis-

persity as leading to the velocity-distribution function, which plays an important role in

the transport theory of polydisperse multiphase flows. As in the molecular kinetic theory,

the mesoscale description of a monodisperse multiphase flow can be formulated in terms

of a kinetic equation for the velocity-distribution function. However, unlike in molecu-

lar gases at standard temperatures and pressures, the disperse-phase entities often interact

infrequently due to collisions, so the standard hydrodynamic approximations valid in the

collision-dominated regime are no longer accurate. In analogy to molecular gases, such

multiphase flows behave as rarefied granular gases wherein processes besides collisions

(e.g. momentum exchange with the continuous phase) are dominant in determining the

flow regime. For this reason, it is often necessary to retain the mesoscale description as the

starting point for describing the disperse-phase flow dynamics.

In summary, a polydisperse multiphase flow consists of one (or more) disperse phases

with entities of possibly different physical properties and velocities. The mesoscale mod-

eling approach (described in more detail in Section 1.3) for describing such flows is the

primary focus of this book. For multiphase flows that are not composed of a clearly distinct

disperse phase, other modeling approaches must be followed (e.g. methods that resolve the

dynamics of the interface separating the phases, or volume-averaging approaches and the

concomitant ad hoc closures of the phase-interaction and transport terms). As will become

clearer to the reader in subsequent chapters, the mesoscale modeling approach allows rig-

orous derivation of the macroscale transport equations, thereby ensuring that the resulting

CFD models will be as accurate as possible when simulating real polydisperse multiphase

flows.

1.2 Two example systems

In this section, we provide two examples of polydisperse multiphase systems. In the first

example, the particles are assumed to be very small so that their inertia is small enough to

be negligible relative to that of the fluid phase. Thus, the particle-size distribution (PSD) is

governed by a PBE and undergoes changes due to aggregation and breakage. In the second

example, the particles are assumed to be large enough to have finite inertia relative to the

surrounding fluid, and we let all particles be identical and consider the distribution of the

particle velocity, which is described by a kinetic equation (KE).

1.2.1 The population-balance equation for fine particles

As a first example, we consider a population of solid particles suspended in a liquid. We

assume that the density and size of the particles are such that they move together with
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the fluid. Local velocity gradients in the fluid, which are generally quantified by the shear

rate, induce particle aggregation and breakage, changing the PSD, as dictated by the cor-

responding PBE. In this context we will assume (as is often the case for colloidal systems)

that aggregation and breakage are completely reversible, which means that, when particles

aggregate, the aggregates formed can later be fragmented by breakage, and that the frag-

ments formed by breakage can, in turn, aggregate together. In what follows we will analyze

the PBE and introduce a set of dimensionless numbers and characteristic time scales that

will turn out to be useful in the investigation of multiphase systems.

Relevant dimensionless numbers and time scales

As described in Chapter 4, the following PBE governs the evolution of the PSD,

representing the state of the solid aggregates:

∂n

∂t
+
∂vfn

∂x
= Γ
∂2n

∂x2
+ C, (1.1)

where vf is the known fluid velocity with which the particles are advected and Γ is a diffu-

sion coefficient. For simplicity, in this example, only one spatial coordinate x is considered

and the diffusion coefficient Γ is constant. The PSD, denoted by n, is a number-density

function (NDF) representing the number concentration of particles with volumes between

V and V + dV . The PSD is a function of time t, of the spatial coordinate x, and of the

volume of the aggregates V . The aggregates are composed of spherical primary parti-

cles with fixed diameter dp. If just one primary particle is included in the aggregate then

V = πd3
p/6, whereas for an aggregate composed of two primary particles V = πd3

p/3, and

so on for larger aggregates. As described in Chapter 5, the source term due to aggregation

and breakage is

C =
1

2

� V

0

a(V 2 V ",V ")n(V 2 V ")n(V ")dV " 2

� >

0

a(V,V ")n(V)n(V ")dV "

+

� >

V

b(V ")N(V |V ")n(V ")dV " 2 b(V)n(V), (1.2)

where a(V,V ") and b(V) are the aggregation and breakage kernels, N(V |V ") is the daughter

distribution function, and the time and space dependences are omitted for clarity. As will

be described in more detail in later chapters, the aggregation and breakage kernels express

the tendency of the particles to aggregate and break. Generally speaking, these kernels

depend strongly on the spatial coordinate x, since real multiphase systems are characterized

by regions where aggregation and breakage occur at very different rates. For example,

particles suspended in a stirred tank might experience intense breakage near the impeller

and strong aggregation in other regions. The daughter distribution function gives instead

the size distribution of particles generated by the breakup of a single aggregate.

In order to highlight the different regimes exhibited by Eq. (1.1) and the different treat-

ments that are more suitable for its solution in each regime, the PBE has to be normalized

and made dimensionless. Different quantities can be used to this end, such as the moments

of order zero and one of the PSD:

m0(t, x) =

� >

0

n(t, x,V)dV,

m1(t, x) =

� >

0

Vn(t, x,V)dV.

(1.3)
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The zeroth-order moment identifies the total aggregate number density (i.e. the total num-

ber of aggregates per unit volume), whereas the first-order moment is the disperse-phase

volume fraction, more frequently denoted by αp. For this simple two-phase system, if αf

is used to indicate the fluid-phase volume fraction, by definition αp + αf = 1. By using

these moments, one can define a mean particle volume corresponding to the ratio between

the moments of order one and zero and, in addition, one can define the dimensionless PSD

ψ(ξ) = n (t, x,V) m1(t, x)/m2
0
(t, x) with ξ = Vm0/m1. The dimensionless PSD has first- and

second-order moments equal to unity, and is useful when searching for the self-similar

solution that characterizes pure aggregation, pure breakage and simultaneous aggregation

and breakage problems (Ramkrishna, 2000). The moment of order two of the PSD,

m2(t, x) =

� >

0

V2n(t, x,V)dV, (1.4)

is instead useful in the definition of the standard deviation of the PSD, which is equal

to m2 2 m2
1
/m0. Here the PSD and Eq. (1.1) are made dimensionless by introducing the

characteristic length L, velocity U, aggregate volume ζ, and total aggregate number density

Nt. For example, for particles suspended in a stirred tank, L could be the tank diameter and

U the impeller-tip velocity, whereas ζ and Nt could be extracted by the volume-average

PSD in the vessel at steady state. The last two quantities can in turn be used to define the

characteristic disperse-phase volume fraction: φp = ζNt.

Knowledge of these characteristic quantities suffices for the calculation of the charac-

teristic time scales for aggregation τa = [a(ζ, ζ)Nt]
21 and breakage τb = [b(ζ)]21. These

two time scales represent the average time interval between two subsequent aggregation or

breakage events. When these time scales are very short, aggregation and breakage events

are very frequent, resulting in rapid evolution of the PSD. In fact, as particles move and

diffuse in the domain, many aggregation and breakage events occur, resulting in a quick

adaptation of the PSD to its local “equilibrium” value neq(t, x,V), which is dictated by

the local values of the aggregation and breakage kernels. Here the term equilibrium refers

to the steady state reached when aggregation and breakage counterbalance each other.2

Because of the hypothesis of reversible aggregation and breakage, this equilibrium will

be different from point to point, since it depends on the local values of the aggregation

and breakage kernels. The equilibrium solution corresponds to the resulting PSD, in the

case of particles unable to move away from point x, but evolving in time according to

the local aggregation and breakage kernels at point x. In contrast, when the characteris-

tic time scales are very long, aggregation and breakage events are not very frequent, and

the evolution of the PSD becomes quite slow. Therefore as particles move and diffuse in the

domain, due to the low aggregation and breakage frequencies and the slow changes in the

PSD, only the averaged rates are perceived. The evolution of the PSD is then determined

by the volume-average kernels, rather than by their local values.

Closer observation of the aggregation time scale shows that it is inversely proportional

to the characteristic total aggregate number density Nt, which is related to the character-

istic disperse-phase volume fraction φp. When the system is dilute (i.e. φp � 1), Nt is

2Depending on the functional form of the aggregation and breakage kernels, different scenarios are possible.

When aggregation prevails, the system can undergo extensive aggregation. Since when particles aggregate their

number is reduced, the gelling limit, where the total number of particles tends to zero, can be reached. In contrast,

when breakage prevails, the total number of particles can go to infinity, giving the opposite limit known as

shattering. When aggregation and breakage counterbalance each other, a population of particles can evolve to a

steady state. This steady state can be calculated by setting the collision source term in Eq. (1.2) equal to zero. We

refer to this steady-state solution as the equilibrium PSD.
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6 Introduction

small and as a consequence the aggregation time scale is large. Under these conditions

aggregation events are separated by long time intervals. In fact, for dilute systems with

very few particles, longer time intervals are necessary to observe a collision between two

particles. In contrast, as the system becomes more concentrated (i.e. as Nt and φp increase)

the time interval between two aggregation events becomes very short, since as more par-

ticles are suspended in the fluid more collisions (and aggregation events) will occur. The

characteristic disperse-phase volume fraction also affects the breakage time scales; in fact,

as aggregation events become more frequent the resulting characteristic aggregate volume

ζ increases. Since generally the breakage kernel increases with increasing particle size (i.e.

larger aggregates are more likely to break than smaller ones), the breakage time scale also

becomes shorter. In summary, dilute systems are characterized by large aggregation and

breakage time scales, whereas for dense systems these time scales are very short.

A more quantitative definition of dilute and dense systems is possible only by analyzing

the normalized and dimensionless PBE. By letting ξ = V/ζ, n7 = nζ/Nt, x7 = x/L, v7
f
=

vf/U, and t7 = tΓ/L2 the following dimensionless PBE is obtained:

∂n7

∂t7
+ Pe
∂v7

f
n7

∂x7
2
∂2n7

∂x72
= Daa

"

1

2

� ξ

0

a7(ξ 2 ξ", ξ")n7(ξ 2 ξ")n7(ξ")dξ"

2

�

+>

0

a7(ξ, ξ")n7(ξ)n7(ξ")dξ"
"

+ Dab

"�

+>

ξ

b7(ξ")N(ξ|ξ")n7(ξ")dξ" 2 b7(ξ)n7(ξ)

"

, (1.5)

where the normalized aggregation and breakage kernels are given by a7(ξ, ξ") = a(V,V ")/

a(ζ, ζ) and b7(ξ) = b(V)/b(ζ). The Péclet number, defined by

Pe =
UL

Γ
=

L2/Γ

L/U
, (1.6)

is the ratio between the particle-diffusion and particle-advection time scales. The aggrega-

tion Damköhler number, defined by

Daa =
a(ζ, ζ)L2Nt

Γ
=

L2/Γ

1/(a(ζ, ζ)Nt)
, (1.7)

is the ratio between the particle-diffusion and particle-aggregation time scales. The

breakage Damköhler number, defined by

Dab =
b(ζ)L2

Γ
=

L2/Γ

1/b(ζ)
, (1.8)

is the ratio between the particle-diffusion and breakage time scales. Depending on the

values of Pe, Daa, and Dab different regimes can be identified. For example, when Pe

becomes much smaller than unity, diffusive particle transport becomes more important than

advective transport. Under this condition, different scenarios are still possible, depending

on the values of Daa and Dab. When both numbers are much smaller than unity, diffusion

is much faster than aggregation and breakage, whereas when both are much greater than

unity aggregation and breakage are faster than particle diffusion. It is important to recall

here that particle diffusion tends to homogenize the PSD in the spatial domain, whereas,

since kernels generally contain some form of spatial dependence, aggregation and breakage

tend to create gradients in the PSD.
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1.2 Two example systems 7

Major operating regimes

From the discussion above, three major operating regimes can be identified from Eq. (1.5).

(i) Under dilute conditions such that φp � 1, aggregation and breakage are slower

than particle diffusion, or, in other words, Daa � 1 and Dab � 1. The evolution

of the PSD is not controlled by the local values of the aggregation and breakage

kernels, but rather by their volume-average values. Under dilute conditions, since

diffusion mixes particles faster than the kernels let them aggregate and break, the

two-phase system is generally considered as spatially homogeneous or well mixed

(i.e. the PSDs at different points of the domain are identical). The evolution of the

PSD for a well-mixed system n̂(t,V) is governed by a volume-average PBE:

∂n̂

∂t
=

1

2

� V

0

â(V 2 V ",V ")n̂(V 2 V ")n̂(V ")dV " 2

� >

0

â(V,V ")n̂(V)n̂(V ")dV "

+

� >

V

b̂(V ")N(V |V ")n̂(V ")dV " 2 b̂(V)n̂(V), (1.9)

where â and b̂ are the volume-average aggregation and breakage kernels, which,

due to their non-linear dependence on the spatial coordinates, are generally quite

different from the local kernels a and b. A system is generally considered dilute (and

therefore well mixed) when Daa and Dab are smaller than 1022. Depending on the

type of problem and the functional form of the aggregation and breakage kernels,

these conditions result in different constraints for the characteristic disperse-phase

volume fraction. For most applications, it is reasonable to consider the operating

regime as dilute when φp < 1023.

(ii) Under moderately dense conditions, Daa and Dab are greater than 1022 but smaller

than 102. The characteristic time scales for aggregation and breakage are then com-

parable to that of particle diffusion. Under these conditions the system cannot be

considered to be well mixed, and the PSD is subjected to large variations across

the spatial domain. As a consequence, the movement of particles in physical space

and their aggregation and breakage cannot be decoupled, and the evolution of the

two-phase system is found by solving Eq. (1.5).

(iii) Under dense conditions Daa and Dab are both greater than 102, and hence aggre-

gation and breakage are very fast (or almost instantaneous) compared with particle

diffusion. Thanks to the hypothesis of reversibility of aggregation and breakage, as

particles diffuse in the domain, they instantaneously adapt to the local equilibrium

solution, i.e. neq. In this case the evolution of the PSD is completely determined by

the local aggregation and breakage kernels and the resulting local steady state.

In summary, for fine particles undergoing aggregation and breakage different modeling

approaches should be used for each of the regimes described above. Under dilute con-

ditions, the system can be approximated as a well-mixed system, since spatial gradients

in the PSD are not relevant. The evolution of the system is governed by Eq. (1.9) using

the volume-average aggregation and breakage kernels. Under moderately dense condi-

tions, spatial gradients of the PSD are not negligible and therefore the evolution of the

system is governed by Eq. (1.5). Under dense conditions the system evolves according to

the equilibrium solution found by setting the right-hand side of Eq. (1.2) equal to zero.
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8 Introduction

1.2.2 The kinetic equation for gas–particle flow

As a second example, we consider the kinetic equation (KE) for monodisperse, isothermal

solid particles suspended in a constant-density gas phase. For clarity, we assume that the

particle material density is significantly larger than that of the gas so that only the fluid

drag and buoyancy terms are needed to account for momentum exchange between the two

phases (Maxey & Riley, 1983). In this example, the particles are large enough to have finite

inertia and thus they evolve with a velocity that can be quite different than that of the gas

phase.

Relevant dimensionless numbers

As in all mathematical descriptions of transport phenomena, the theory of polydisperse

multiphase flows introduces a set of dimensionless numbers that are pertinent in describ-

ing the behavior of the flow. Depending on the complexity of the flow (e.g. variations in

physical properties due to chemical reactions, collisions, etc.), the set of dimensionless

numbers can be quite large. (Details on the physical models for momentum exchange are

given in Chapter 5.) As will be described in detail in Chapter 4, a kinetic equation can

be derived for the number-density function (NDF) of the velocity of the disperse phase

n(t, x, v). Also in this example, for clarity, we will assume that the problem has only one

particle velocity component v and is one-dimensional in physical space with coordinate x

at time t. Furthermore, we will assume that the NDF has been normalized (by multiplying

it by the volume of a particle) such that the first three velocity moments are

αp c

�

+>

2>

n dv,

αpUp c

�

+>

2>

vn dv, (1.10)

αpΘp + αpU2
p c

�

+>

2>

v2n dv,

where αp, Up, and Θp are the volume fraction, mean velocity, and granular temperature of

the disperse phase, respectively. The example kinetic equation is then given by

∂n

∂t
+
∂vn

∂x
+
∂An

∂v
= C, (1.11)

where the acceleration (due to buoyancy, gravity, and drag) and collision terms are defined,

respectively, by

A c 2
1

ρp

∂pg

∂x
+ gx +

1

τp

(Ug 2 v),

C c
1

τc

(neq 2 n).

(1.12)

In these expressions, gx is the x-component of the gravity force, ρp is the particle density,

and pg is the gas-phase pressure. τp and τc are characteristic time scales for drag and

collisions, respectively. Ug is the velocity of the gas phase, and neq is the equilibrium
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distribution. For simplicity, we have used a linear collision model3 in which the first two

moments of neq are the same as those of n, and the third is

1 + e2

2
αpΘp + αpU2

p =

�

+>

2>

v2neq dv, (1.13)

and 0 f e f 1 is the coefficient of restitution for particle–particle collisions. For elastic

collisions, e = 1, whereas e < 1 corresponds to inelastic collisions.

The disperse-phase kinetic equation is coupled to the continuity and momentum

equations for the continuous phase, which are given, respectively, by

∂αg

∂t
+
∂(αgUg)

∂x
= 0,

∂(αgUg)

∂t
+
∂(αgUgUg)

∂x
= αgνg

∂2Ug

∂x2
2
αg

ρg

∂pg

∂x
+ αggx +

ρpαp

ρgτp

(Up 2 Ug),

(1.14)

where αg, ρg, and νg are the gas-phase volume fraction, density, and kinematic viscosity,4

respectively. By definition, αp + αg = 1. In order to make Eqs. (1.14) dimensionless, we

introduce a characteristic gas-phase velocity U and characteristic length L. The dimen-

sionless time is then t7 = tU/L. On noting that αg is dimensionless and letting x7 = x/L,

U7
g = Ug/U, and U7

p = Up/U, we then have

∂αg

∂t7
+
∂αgU7

g

∂x7
= 0,

∂(αgU7
g)

∂t7
+
∂(αgU7

gU7
g)

∂x7
=
αg

Reg

∂2U7
g

(∂x7)2
2 αg

∂p7g

∂x7
+
αg

Fr2
g

g7x +
αgφ2

St
(U7

p 2 U7
g),

(1.15)

where p7g = p/(ρgU2) and g7x = gx/g. The gas-phase Reynolds and Froude numbers are

defined, respectively, by Reg = UL/νg and Frg = U/(Lg)1/2, where g is the gravitational

acceleration constant. The Stokes number is defined by St = Uτp/L, and the phase-mass

ratio by φ2 = αpρp/(αgρg). The latter is an important parameter insofar as it determines

whether the gas phase “sees” the disperse phase (i.e. momentum coupling is negligible

when φ2 � 1).

The kinetic equation given by Eq. (1.11) is made dimensionless by defining v7 = v/U

and n7 = Un:
∂n7

∂t7
+
∂(v7n7)

∂x7
+
∂(A7n7)

∂v7
= C

7, (1.16)

where n7(t7, x7, v7) is the dimensionless velocity distribution function,5 and

A
7 c 2

1

φ1

∂p7g

∂x7
+

g7x

Fr2
g

+
1

St
(U7

g 2 v7),

C
7 c

φ3

Knp

(n7 2 n).

(1.17)

3See Chapter 6 for more details on collision models.
4For a 1D flow the viscosity term would normally be zero. However, we include the viscosity term as a

placeholder for the fully 3D case in order to show the Reynolds-number dependence.
5Note that n and neq are made dimensionless in a manner such that αp =

�

n7 dv7. Because the kinetic equation

is linear in n, no new dimensionless numbers are generated by this process.
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10 Introduction

The phase-density ratio is defined by φ1 = ρp/ρg and, since φ1 � 1, the buoyancy term

is negligible. The two new dimensionless numbers generated in this process are the phase-

velocity ratio φ3 = U
 
p/U,6 and the disperse-phase Knudsen number Knp = U

 
pτc/L. In

addition, the dimensionless form of Eqs. (1.10),

αp =

�

+>

2>

n7 dv7,

αpU7
p =

�

+>

2>

v7n7 dv7,

αp

φ2
3

Ma2
p

+ αp(U7
p)2
=

�

+>

2>

(v7)2n7 dv7,

(1.18)

introduces the disperse-phase Mach number Map = U
 
p/Θ

1/2
p . By analogy to compressible

gas flows, Map is the ratio of the characteristic mean particle velocity U
 
p and the speed of

“sound” (Θ
1/2
p ) in the disperse phase. Thus for Map � 1 transport in the disperse phase

is predominantely due to velocity fluctuations, whereas for Map � 1 it is due to mean

advection.

Following the convention used in gas dynamics, we will define the velocity ratio and

disperse-phase Knudsen number differently according to whether the disperse phase is

subsonic or supersonic:

for Map f 1, φ3 =
Θ

1/2
p

U
, Knp =

Θ
1/2
p τc

L
=
π1/2dp

12αpg0L
;

for Map g 1, φ3 =
U

 
p

U
, Knp =

U
 
pτc

L
=
π1/2dp

12αpg0L
Map.

(1.19)

Here dp is the particle diameter,7 g0(αp/α
7
p) is the radial distribution function, and α7p j

0.63 is the maximum volume fraction at close packing. For αp � α7p, g0 j 1. However, as

αp approaches α7p, g0 diverges to infinity.

Note that the ratio φ3 will depend strongly on the Stokes number,

St =
Uτp

L
=
ρpd2

pU

18ρgνgL
, (1.20)

where this expression for τp is valid for small particle Reynolds numbers, defined by

Rep c
dp|Up 2 Ug|

νg
. (1.21)

When St � 1 the kinetic equation will be uncoupled from the gas phase and the disperse

phase will behave as a granular gas. In the opposite limit where St � 1, Θp j 0 and

U
 
p j U, so that the disperse-phase Mach number will be very large and φ3 j 1. At

intermediate values of the Stokes number, a rich variety of flow phenomena depending on

all the values of the dimensionless parameters can be observed.

6Because φ3 and Knp appear together in Eq. (1.17), they could be combined into one dimensionless number.

We keep them separate so that Knp and Map depend only on disperse-phase variables.
7At fixed volume fraction αp, reducing dp increases the collision rate because the total number concentration

of particles N increases significantly.
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