
Chapter 1

Introductory Concepts

The scientist does not study nature because it is useful; he studies it because
he delights in it, and he delights in it because it is beautiful. If nature were
not beautiful, it would not be worth knowing, and if nature were not worth
knowing, life would not be worth living.

- Jules Henri Poincaré (1854–1912)
French Mathematician and Physicist

Mechanics is the study of the effect that physical forces have on objects. Dynamics
is the particular branch of mechanics that deals with the study of the effect that forces
have on the motion of objects. Dynamics is itself divided into two branches called
Newtonian dynamics and relativistic dynamics. Newtonian dynamics is the study of
the motion of objects that travel with speeds significantly less than the speed of light
while relativistic dynamics is the study of the motion of objects that travel with speeds
at or near the speed of light. This division in the subject of dynamics arises because the
physics associated with the motion of objects that travel with speeds much less than
the speed of light can be modeled much more simply than the physics associated with
the motion of objects that travel with speeds at or near the speed of light. Moreover,
nonrelativistic dynamics deals primarily with the motion of objects on a macroscopic
scale while relativistic dynamics deals with the study of the motion of objects on a
microscopic or submicroscopic scale. The objective of this book is to present the
underlying concepts of Newtonian dynamics in a clear and concise manner and to
develop a systematic framework for solving problems in classical Newtonian dynamics.

As with any subject that is based on the laws of physics, Newtonian dynamics needs
to be described using mathematics. More specifically, it must be possible to describe
the physical laws in a way that is independent of the particular coordinate system in
which one chooses to formulate a particular problem. The mathematical approach that
gives us the freedom to develop a coordinate-free approach to Newtonian mechanics
is that of vector and tensor algebra.

Once the physical laws have been described in a coordinate-free manner, the next
step is to formulate the particular problem of interest. While the basic laws them-
selves are coordinate-free, to solve a particular problem it is necessary to specify all
relevant quantities using a coordinate system of choice. While in principle it is possi-
ble to use any coordinate system to describe the motion of a material body, choosing
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2 Chapter 1. Introductory Concepts

a particular coordinate system could vastly simplify the particular problem under con-
sideration. The remainder of this chapter is devoted to providing a review of the vector
and tensor algebra required to formulate and analyze problems in nonrelativistic me-
chanics. While this chapter provides a mathematical overview, it is not intended as a
substitute for a book on engineering mathematics. For a more in-depth presentation
of engineering mathematics, the reader is referred to a standard text in undergraduate
engineering mathematics such as that found in Kreyszig (1988).

1.1 Scalars

A scalar is any quantity that is expressible as a real number. We denote a scalar by a
non-boldface character and denote the set of real numbers by R, i.e., we say that the
(non-boldface) quantity a is a scalar if

a ∈ R

Scalars satisfy the following properties with respect to addition and multiplication:

1. Commutativity: For all a ∈ R and b ∈ R,

a+ b = b + a
ab = ba

2. Associativity: For all a ∈ R, b ∈ R, and c ∈ R,

(a+ b)+ c = a+ (b + c)
a(bc) = (ab)c

3. Zero Scalar: There exists a scalar 0 such that for all a ∈ R,

a+ 0 = 0+ a = a
0(a) = (a)0 = 0

4. Unit Scalar: there exists a scalar 1 such that for all a ∈ R,

1(a) = (a)1 = a

5. Inverse scalar: For all a ≠ 0 ∈ R, there exists a scalar 1/a such that

1
a
(a) = a1

a
= 1

6. Negativity: There exists a scalar −1 such that for all a ∈ R

−1(a) = a(−1) = −a
a+ (−a) = (−a)+ a = 0
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1.2 Vectors 3

1.2 Vectors

A vector is any quantity that has both magnitude and direction. A vector is denoted
by a boldface character, i.e., a quantity a is a vector. Because the study of New-
tonian mechanics focuses on the motion of objects in three-dimensional Euclidean
space, throughout this book we will be interested in three-dimensional vectors. Three-
dimensional Euclidean space is denoted R3. Consequently, the notation

a ∈ R3

means that the vector a lies in R3.
The length of a vector a ∈ R3 is called the magnitude of a. The magnitude or

Euclidean norm of a vector a is denoted ‖a‖ and is a scalar, i.e., ‖a‖ ∈ R. A vector
whose magnitude is zero is called the zero vector. We denote the zero vector by a
boldface zero, i.e., the zero vector is denoted by 0. The direction of a nonzero vector a
is the vector divided by its magnitude, i.e., the direction of the vector a, denoted ua, is
given as

ua = a
‖a‖

Furthermore, the direction of a nonzero vector is called a unit vector because its mag-
nitude is unity, i.e., ‖ua‖ = 1. Two vectors are said to be equal if they have the same
magnitude and direction.

1.2.1 Types of Vectors

While geometrically a vector is any quantity with magnitude and direction, the physical
effect of a vector a on a mechanical system may depend in addition on a particular line
of action in R3 or a particular point in R3. In particular, vectors arising in mechanics
fall into one of three categories1: (a) free vectors; (b) sliding vectors; and (c) bound
vectors. Each type of vector is now described in more detail.

A free vector is any vector b with no specified line of action or point of application
in R3. Figure 1–1 shows an example of two identical free vectors b and b′. While b
and b′ have the same direction and magnitude, they do not share the same start or
end point. In particular, b starts at point Q and ends at point P while b′ starts at
point Q′ ≠ Q and ends at point P ′ ≠ P . However, because b and b′ have the same
direction and magnitude, they are identical free vectors. Examples of free vectors are
the angular velocity of a reference frame or a rigid body, a pure torque applied to a
rigid body, and a basis vector.

A sliding vector is any vector b that has a specified line of action or axis in R3,
but has no specified point of application in R3. Figure 1–2 shows two identical sliding
vectors b and b′. As with free vectors, b and b′ have the same magnitude and direction.
However, while the vector b starts at pointQ and ends at point P , the vector b′ starts at
point Q′ ≠ Q and ends at point P ′ ≠ P (where the points P , Q, P ′, and Q′ are colinear).
Consequently, b and b′ are identical sliding vectors, but are different free vectors. An
example of a sliding vector is the force applied to a rigid body.

A bound vector is any vector that has both a specified line of action in R3 and a
specified point of application in R3. From its definition, it can be seen that a bound

1An excellent description of free, sliding, and bound vectors can be found in either Synge and Griffith
(1959) or Greenwood (1988).
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4 Chapter 1. Introductory Concepts
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Figure 1–1 Two equal free vectors b and b′ that have the same direction and mag-
nitude, but different lines of action and different start and end points.

vector is unique, i.e., only one vector can have a specified direction, magnitude, line
of action, and origin. An example of a bound vector is the force acting on or exerted
by an elastic body (e.g., the force exerted by a linear spring); in the case of an elastic
body, the deformation of the body depends on the changing point of application of the
force.

It should be noted that vector algebra is valid only for free vectors. However, be-
cause all vectors are defined by their direction and magnitude, vector algebra can be
performed on sliding and bound vectors by treating them as though they are free vec-
tors. Consequently, the result of any algebraic operation on vectors, regardless of the
type of vector, results in a free vector. From this point forth, unless otherwise stated
or additional clarification is necessary, all vectors will be assumed to be free vectors.

1.2.2 Addition of Vectors

Let a and b be vectors in R3. Then the sum of a and b, denoted c, is given as

c = a+ b (1–1)

Vector addition has the following properties:

1. Commutativity: For all a ∈ R3 and b ∈ R3,

a+ b = b+ a
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Figure 1–2 Two equal sliding vectors b and b′ that have the same direction, magni-
tude, and line of action, but different start and end points.

2. Associativity: For all a ∈ R3, b ∈ R3, and c ∈ R3,

(a+ b)+ c = a+ (b+ c)

3. Zero vector: There exists a vector 0 such that for all a ∈ R3,

a+ 0 = a

4. For all a ∈ R3, there exists −a ∈ R3 such that

a+ (−a) = 0

1.2.3 Components of a Vector

Any vector a ∈ R3 can be expressed in terms of three noncoplanar vectors e1, e2, and
e3 called basis vectors. Correspondingly, any noncoplanar set of vectors {e1,e2,e3} is
called a basis for R3. In terms of the basis {e1,e2,e3}, the vector a can be written as

a = a1e1 + a2e2 + a3e3 (1–2)

where a1, a2, and a3 are the components of a in the basis {e1,e2,e3}. Generally speak-
ing, it is preferable to use a basis of mutually orthogonal vectors. Any basis consisting
of mutually orthogonal vectors is called an orthogonal basis. Even more specifically,
it is most preferable to use a basis consisting of mutually orthogonal unit vectors. A
basis consisting of mutually orthogonal unit vectors is called an orthonormal basis. In
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6 Chapter 1. Introductory Concepts

the remainder of this book, we will restrict our attention to orthonormal bases. To
this end, we will use the term “basis” to mean specifically an orthonormal basis. The
representation of a vector a in an orthonormal basis {e1,e2,e3} is shown schemati-
cally in Fig. 1–3. Using the basis {e1,e2,e3}, we can resolve two vectors a and b into

a1

a2

a3

e1

e2

e3 a

O

Figure 1–3 Vector a expressed in an orthonormal basis {e1,e2,e3}.

{e1,e2,e3} as follows:
a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3
(1–3)

Then the sum of a and b is given in terms of {e1,e2,e3} as

c = (a1 + b1)e1 + (a2 + b2)e2 + (a3 + b3)e3 (1–4)

1.2.4 Multiplication of a Vector by a Scalar

Let a be a vector in R3 and let k ∈ R be a scalar. Then the product of a with the scalar
k, denoted ka, has the following properties:

1. ‖ka‖ = |k|‖a‖

2.
ka
‖ka‖ =

a
‖a‖ if k > 0 and a ≠ 0

3.
ka
‖ka‖ = −

a
‖a‖ if k < 0 and a ≠ 0

4. ka = 0 if either a = 0 or k = 0

5. k(a+ b) = ka+ kb

6. (k1 + k2)a = k1a+ k2a

7. k2(k1a) = k2k1a

8. (1)a = a(1) = a

9. (0)a = a(0) = 0
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1.2 Vectors 7

10. (−1)a = a(−1) = −a

Finally, if a is expressed in the basis {e1,e2,e3}, then ka is given as

ka = ka1e1 + ka2e2 + ka3e3 (1–5)

1.2.5 Scalar Product

Let a and b be vectors in R3. Then the scalar product or dot product between a and b
is defined as

a · b = ‖a‖‖b‖ cosθ = ab cosθ (1–6)

where θ is the angle between a and b. The scalar product has the following properties:

1. a · b = b · a

2. a · (kb) = ka · b where k ∈ R
3. (a+ b) · c = a · c+ b · c

Two nonzero vectors are said to be orthogonal if their scalar product is zero, i.e., a and
b are orthogonal if

a · b = 0 (a,b ≠ 0) (1–7)

A set of vectors {a1, . . . ,an} is said to be mutually orthogonal if

ai · aj = 0 (i ≠ j, i, j = 1, . . . , n) (1–8)

Finally, the magnitude of a vector a is equal to the square root of the dot product of
the vector with itself, i.e.,

‖a‖ = √a · a (1–9)

Suppose now that a and b are expressed in a particular basis {e1,e2,e3} as

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3
(1–10)

Then the scalar product of a with b is given as

a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3) (1–11)

Because we are restricting attention to orthonormal bases, the basis {e1,e2,e3} satis-
fies the properties that

ei · ej =
{

1 (i = j)
0 (i ≠ j) (i, j = 1,2,3) (1–12)

Consequently, we have
a · b = a1b1 + a2b2 + a3b3 (1–13)

Using Eq. (1–13) and the definition of the magnitude of a vector as given in Eq. (1–9),
the magnitude of a vector a can be written in terms of the components of a in the basis
{e1,e2,e3} as

‖a‖ =
√
a2

1 + a2
2 + a2

3 (1–14)
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8 Chapter 1. Introductory Concepts

1.2.6 Vector Product

Let a and b be vectors in R3. Then the vector product or cross product between two
vectors a and b is defined as

c = a× b = ‖a‖‖b‖ sinθn (1–15)

where n is the unit vector in the direction orthogonal to both a and b in a right-handed
sense and θ is the angle between a and b. The term “right-handed sense” arises from
the fact that the vectors a, b, and c assume an orientation that corresponds to the
index finger, middle finger, and thumb of the right hand when these three fingers are
held as shown in Fig. 1–4.

a

b

c

n

Figure 1–4 Schematic of right-hand rule corresponding to the vector product of two
vectors using the index finger, middle finger, and thumb of the right hand.

The magnitude of the vector product of two vectors is given as

‖c‖ = ‖a‖‖b‖ sinθ (1–16)

The vector product has the following properties:

1. a× a = 0

2. a× b = −b× a

3. (ka)× b = k(a× b) = a× (kb) where k ∈ R
4. (a+ b)× c = (a× c)+ (b× c)

Now suppose that a and b are expressed in terms of the basis {e1,e2,e3}, i.e.,

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3
(1–17)
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1.2 Vectors 9

Then the cross product of a and b is given as

a× b = (a1e1 + a2e2 + a3e3)× (b1e1 + b2e2 + b3e3) (1–18)

Expanding Eq. (1–18), we obtain

a× b = a1b2e1 × e2 + a1b3e1 × e3 + a2b1e2 × e1

+ a2b3e2 × e3 + a3b1e3 × e1 + a3b2e3 × e2
(1–19)

Again we remind the reader that we are restricting our attention to orthonormal bases.
Furthermore, suppose that the basis {e1,e2,e3} forms a right-handed set, i.e., {e1,e2,e3}
satisfies the following properties:

e1 × e2 = e3

e2 × e3 = e1

e3 × e1 = e2

(1–20)

Then a× b is given as

a× b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (1–21)

In terms of a right-handed basis, Eq. (1–21) can also be written as the following deter-
minant (Kreyszig, 1988):

a× b =

∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ (1–22)

1.2.7 Scalar Triple Product

Given three vectors a, b, and c, the scalar triple product is defined as

a · (b× c) (1–23)

The scalar triple product has the following properties:

1. a · (b× c) = (a× b) · c = b · (c× a) = c · (a× b)

2. a · (kb× c) = ka · (b× c)

Suppose that the vectors a, b, and c are each expressed in an orthonormal basis
{e1,e2,e3} as

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3

c = c1e1 + c2e2 + c3e3

(1–24)

Then the scalar triple product can be written as

a · (b× c) = a1(b2c3 − b3c2)+ a2(b3c1 − b1c3)+ a3(b1c2 − b2c1) (1–25)

The scalar triple product can also be written as the following determinant:

a · (b× c) =

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ (1–26)

Finally, the scalar triple product can be written as

a · (b× c) = ‖a‖‖b× c‖ cosθ (1–27)

where θ is the angle between the vector a and the vector b× c.
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10 Chapter 1. Introductory Concepts

1.2.8 Vector Triple Product

Given three vectors a, b, and c, the vector triple product is given as

a× (b× c) (1–28)

The vector triple product can be written as

a× (b× c) = (a · c)b− (a · b)c (1–29)

Suppose that the vectors a, b, and c are each expressed in an orthonormal basis
{e1,e2,e3} as

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3

c = c1e1 + c2e2 + c3e3

(1–30)

The vector triple product can then be written as

a× (b× c) = (a1c1 + a2c2 + a3c3)(b1e1 + b2e2 + b3e3)
− (a1b1 + a2b2 + a3b3)(c1e1 + c2e2 + c3e3)

(1–31)

1.3 Tensors

A tensor (or second-order tensor2), denoted T, is a linear operator that associates a
vector a ∈ R3 to another vector b ∈ R3, i.e., if T is a tensor and a ∈ R3 is a vector, then
there exists a vector b such that

b = T · a (1–32)

It is noted that the binary operator “·” in Eq. (1–32) is different from the scalar product
between two vectors in that the “·” denotes the operation of the tensor T on the vector
a. Now, because tensors are linear operators, they satisfy the following properties:

1. For all a,b ∈ R3,
T · (a+ b) = T · a+ T · b

2. For all a ∈ R3 and k ∈ R,
T · (ka) = kT · a

3. There exists a zero tensor, denoted O, such that for every a ∈ R3,

O · a = 0 (1–33)

where 0 is the zero vector.

4. There exists an identity tensor or unit tensor, denoted U, such that for every a ∈ R3,

U · a = a (1–34)

2Strictly speaking, the tensor defined in Eq. (1–32) is a second-order tensor. While tensor algebra gener-
alizes well beyond second-order tensors, in this book we will only be concerned with second-order tensors.
Consequently, throughout this book we will use the term “tensor” to mean “second-order tensor”.
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