
1 What Gödel’s Theorems say

1.1 Basic arithmetic

It seems to be child’s play to grasp the fundamental notions involved in the arith-
metic of addition and multiplication. Starting from zero, there is a sequence of
‘counting’ numbers, each having just one immediate successor. This sequence of
numbers – officially, the natural numbers – continues without end, never circling
back on itself; and there are no ‘stray’ numbers, lurking outside this sequence.
Adding n to m is the operation of starting from m in the number sequence and
moving n places along. Multiplying m by n is the operation of (starting from
zero and) repeatedly adding m, n times. And that’s about it.

Once these fundamental notions are in place, we can readily define many more
arithmetical notions in terms of them. Thus, for any natural numbers m and n,
m < n iff there is a number k �= 0 such that m + k = n. m is a factor of n iff
0 < m and there is some number k such that 0 < k and m× k = n. m is even iff
it has 2 as a factor. m is prime iff 1 < m and m’s only factors are 1 and itself.
And so on.1

Using our basic and/or defined concepts, we can then make various general
claims about the arithmetic of addition and multiplication. There are familiar
truths like ‘addition is commutative’, i.e. for any numbers m and n, we have
m + n = n + m. There are also yet-to-be-proved conjectures like Goldbach’s
conjecture that every even number greater than two is the sum of two primes.

That second example illustrates the truism that it is one thing to understand
what we’ll call the language of basic arithmetic (i.e. the language of the addition
and multiplication of natural numbers, together with the standard first-order
logical apparatus), and it is another thing to be able to evaluate claims that can
be framed in that language.

Still, it is extremely plausible to suppose that, whether the answers are readily
available to us or not, questions posed in the language of basic arithmetic do have
entirely determinate answers. The structure of the number sequence is (surely)
simple and clear. There’s a single, never-ending sequence, starting with zero;
each number is followed by a unique successor; each number is reached by a finite
number of steps from zero; there are no repetitions. The operations of addition
and multiplication are again (surely) entirely determinate; their outcomes are
fixed by the school-room rules. So what more could be needed to fix the truth or
falsity of propositions that – perhaps via a chain of definitions – amount to claims
of basic arithmetic? To put it fancifully: God sets down the number sequence

1‘Iff’ is, of course, the standard logicians’ shorthand for ‘if and only if’.
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1 What Gödel’s Theorems say

and specifies how the operations of addition and multiplication work. He has
then done all he needs to do to make it the case that Goldbach’s conjecture is
true (or false, as the case may be).

Of course, that last remark is far too fanciful for comfort. We may find it
compelling to think that the sequence of natural numbers has a definite structure,
and that the operations of addition and multiplication are entirely nailed down
by the familiar school-room rules. But what is the real content of the thought
that the truth-values of all basic arithmetic propositions are thereby ‘fixed’?

Here’s one initially attractive way of giving non-metaphorical content to that
thought. The idea is that we can specify a bundle of fundamental assumptions
or axioms which somehow pin down the structure of the number sequence, and
which also characterize addition and multiplication (after all, it is entirely natural
to suppose that we can give a reasonably simple list of true axioms to encapsulate
the fundamental principles so readily grasped by the successful learner of school
arithmetic). So suppose that ϕ is a proposition which can be formulated in
the language of basic arithmetic. Then, the plausible suggestion continues, the
assumed truth of our axioms always ‘fixes’ the truth-value of any such ϕ in the
following sense: either ϕ is logically deducible from the axioms by a normal kind
of proof, and so ϕ is true; or its negation ¬ϕ is deducible from the axioms,
and so ϕ is false.2 We may not, of course, actually stumble on a proof one way
or the other: but the idea is that such a proof always exists, since the axioms
contain enough information to enable the truth-value of any basic arithmetical
proposition to be deductively extracted by deploying familiar step-by-step logical
rules of inference.

Logicians say that a theory T is (negation) complete if, for every sentence ϕ
in the language of the theory, either ϕ or ¬ϕ is deducible in T ’s proof system.
So, put into that jargon, the suggestion we are considering is this: we should be
able to specify a reasonably simple bundle of true axioms which, together with
some logic, give us a complete theory of basic arithmetic: we could in principle
use the theory to prove the truth or falsity of any claim about addition and/or
multiplication (or at least, any claim we can state using quantifiers like ‘for all’,
connectives like ‘if’ and ‘not’, and identity). And if that’s right, truth in basic
arithmetic could just be equated with provability in this complete theory.

It is tempting to say more. For what will the axioms of basic arithmetic look
like? Here’s one candidate: ‘For every natural number, there’s a unique next
one’. This is evidently true: but evident how? Is it that we have some special
and rather mysterious faculty of mathematical intuition which allows us just to
‘see’ that this axiom is true? Or can we avoid an appeal to intuition? Maybe the
axiom is evidently true because it is some kind of definitional triviality. Perhaps
it is just part of what we mean by talk of the natural numbers that we are
dealing with an ordered sequence where each member of the sequence has a

2‘Normal proof’ is vague, and soon we will need to be more careful: but the idea is that
we don’t want to countenance, e.g., ‘proofs’ with an infinite number of steps.
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Incompleteness

unique successor. And, plausibly, other candidate axioms are similarly true by
definition (or are logically derivable from definitions).

If those tempting thoughts are right – if the truths of basic arithmetic all flow
deductively from logic plus definitionally true axioms – then true arithmetical
claims would be simply analytic in the philosophers’ sense.3 And this so-called
‘logicist’ view would then give us a very neat explanation of the special certainty
and the necessary truth of correct claims of basic arithmetic.

1.2 Incompleteness

But now, in headline terms, Gödel’s First Incompleteness Theorem shows that
the entirely natural idea that we can completely axiomatize basic arithmetic is
wrong. Suppose we try to specify a suitable axiomatic theory T that seems to
capture the structure of the natural number sequence and pin down addition and
multiplication (and maybe a lot more besides). Then Gödel gives us a recipe for
coming up with a corresponding sentence GT , couched in the language of basic
arithmetic, such that (i) we can show (on very modest assumptions, e.g. that T
is consistent) that neither GT nor ¬GT can be derived in T , and yet (ii) we can
also recognize that, at least if T is consistent, GT will be true.

This is surely astonishing. Somehow, it seems, the class of basic arithmetic
truths about addition and multiplication will always elude our attempts to pin
it down by a fixed set of fundamental assumptions from which we can deduce
everything else.

How does Gödel show this in his great 1931 paper which presents the In-
completeness Theorems? Well, note how we can use numbers and numerical
propositions to encode facts about all sorts of things. For a trivial example,
students in the philosophy department might be numbered off in such a way
that one student’s code-number is less than another’s if the first student en-
rolled before than the second; a student’s code-number ends with ‘1’ if she is
an undergraduate student and with ‘2’ if she is a graduate; and so on and so
forth. More excitingly, we can use numbers and numerical propositions to encode
facts about theories, e.g. facts about what can be derived in a theory T .4 And

3Thus Gottlob Frege, writing in his wonderful Grundlagen der Arithmetik, urges us to seek
the proof of a mathematical proposition by ‘following it up right back to the primitive truths.
If, in carrying out this process, we come only on general logical laws and on definitions, then
the truth is an analytic one.’ (Frege, 1884, p. 4)

4It is absolutely standard for logicians to talk of a theory T as proving a sentence ϕ when
there is a logically correct derivation of ϕ from T ’s assumptions. But T ’s assumptions may
be contentious or plain false or downright absurd. So, T ’s proving ϕ in the logician’s sense
does not mean that ϕ is proved in the sense that it is established as true. It is far too late
in the game to kick against the logician’s usage, and in most contexts it is harmless. But our
special concern in this book is with the connections and contrasts between being true and being
provable in this or that theory T . So we need to be on our guard. And to help emphasize that
proving-in-T is not always proving-as-true, I’ll often talk of ‘deriving’ rather than ‘proving’
sentences when it is the logician’s notion which is in play.
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1 What Gödel’s Theorems say

what Gödel did is find a general method that enabled him to take any theory T
strong enough to capture a modest amount of basic arithmetic and construct a
corresponding arithmetical sentence GT which encodes the claim ‘The sentence
GT itself is unprovable in theory T ’. So GT is true if and only if T can’t prove it.

Suppose that T has true axioms and a reliably truth-preserving deductive
logic. Then everything T proves must be true, i.e. T is a sound theory. But if T
were to prove its Gödel sentence GT , then it would prove a falsehood (since GT

is true if and only if it is unprovable). Hence, if T is sound, GT is unprovable in
T . But then GT is true. Hence ¬GT is false; and so that too can’t be proved by
T , because T only proves truths. In sum, still assuming T is sound, neither GT

nor its negation will be provable in T : therefore T can’t be negation complete.
And in fact we don’t even need to assume that T is sound: the official First
Theorem shows, for a start, that T ’s mere consistency is enough to guarantee
that a suitably constructed GT is true-but-unprovable-in-T .

To repeat: the sentence GT encodes the claim that that very sentence is un-
provable. But doesn’t this make GT uncomfortably reminiscent of the Liar sen-
tence ‘This very sentence is false’ (which is false if it is true, and true if it is
false)? You might well wonder whether Gödel’s argument doesn’t lead to a cousin
of the Liar paradox rather than to a theorem. But not so. As we will soon see,
there is nothing at all suspect or paradoxical about Gödel’s First Theorem as a
technical result about formal axiomatized systems (a result which we can in any
case prove without appeal to ‘self-referential’ sentences).

‘Hold on! If we can locate GT , a Gödel sentence for our favourite nicely ax-
iomatized theory of arithmetic T , and can argue that GT is true-but-unprovable,
why can’t we just patch things up by adding it to T as a new axiom?’ Well, to
be sure, if we start off with theory T (from which we can’t deduce GT ), and add
GT as a new axiom, we’ll get an expanded theory U = T +GT from which we can
quite trivially derive GT . But we can now just re-apply Gödel’s method to our
improved theory U to find a new true-but-unprovable-in-U arithmetic sentence
GU that encodes ‘I am unprovable in U ’. So U again is incomplete. Thus T is
not only incomplete but, in a quite crucial sense, is incompletable.

Let’s emphasize this key point. There’s nothing mysterious about a theory
failing to be negation complete, plain and simple. Imagine the departmental
administrator’s ‘theory’ D which records some basic facts about the course se-
lections of a group of students: the language of D, let’s suppose, is very limited
and can only be used to tell us about who takes what course in what room
when. From the ‘axioms’ of D we’ll be able, let’s suppose, to deduce further
facts – such as that Jack and Jill take a course together, and that ten people
are taking the logic course. But if there’s no relevant axiom in D about their
classmate Jo, we might not be able to deduce either J = ‘Jo takes logic’ or ¬J =
‘Jo doesn’t take logic’. In that case, D isn’t yet a negation-complete story about
the course selections of students. However, that’s just boring: for the ‘theory’
about course selection is no doubt completable (i.e. it can be expanded to set-
tle every question that can be posed in its very limited language). By contrast,
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More incompleteness

what gives Gödel’s First Theorem its real bite is that it shows that any properly
axiomatized and consistent theory of basic arithmetic must remain incomplete,
whatever our efforts to complete it by throwing further axioms into the mix.

Finally, note that since GU can’t be derived from U , i.e. T + GT , it can’t be
derived from the original T either. So we can iterate the same Gödelian con-
struction to generate a never-ending stream of independent true-but-unprovable
sentences for any nicely axiomatized T including enough basic arithmetic.

1.3 More incompleteness

Incompletability does not just affect theories of basic arithmetic. Consider set
theory, for example. Start with the empty set ∅. Form the set {∅} containing
∅ as its sole member. Now form the set {∅, {∅}} containing the empty set we
started off with plus the set we’ve just constructed. Keep on going, at each stage
forming the set of all the sets so far constructed. We get the sequence

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

This sequence has the structure of the natural numbers. We can pick out a first
member (corresponding to zero); each member has one and only one successor; it
never repeats. We can go on to define analogues of addition and multiplication.
Moreover, any standard set theory can define this sequence. So if we could have
a negation-complete axiomatized set theory, then we could, in particular, have a
negation-complete theory of the fragment of set theory which provides us with
an analogue of arithmetic; adding a simple routine for translating the results for
this fragment into the familiar language of basic arithmetic would then give us a
complete theory of arithmetic. Hence, by Gödel’s First Incompleteness Theorem,
there cannot be a negation-complete set theory.

The point evidently generalizes: any axiomatized mathematical theory T that
can define (an analogue of) the natural-number sequence and replicate enough
of the basic arithmetic of addition and multiplication must be incomplete and
incompletable.5

1.4 Some implications?

Gödelian incompleteness immediately defeats what is otherwise a surely attrac-
tive suggestion about the status of arithmetic – namely the logicist idea that it
all flows deductively from a simple bunch of definitional truths that articulate
the very ideas of the natural numbers, addition and multiplication.

But then, how do we manage somehow to latch on to the nature of the un-
ending number sequence and the operations of addition and multiplication in a
way that outstrips whatever rules and principles can be captured in definitions?

5We return to this point more carefully in Section 18.2.
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1 What Gödel’s Theorems say

At this point it can seem that we must have a rule-transcending cognitive grasp
of the numbers which underlies our ability to recognize certain ‘Gödel sentences’
as correct arithmetical propositions. And if you are tempted to think so, then
you may well be further tempted to conclude that minds such as ours, capable
of such rule-transcendence, can’t be machines (supposing, reasonably enough,
that the cognitive operations of anything properly called a machine can be fully
captured by rules governing the machine’s behaviour).

So there’s apparently a quick route from reflections about Gödel’s First The-
orem to some conclusions about the nature of arithmetical truth and the nature
of the minds that grasp it. Whether those conclusions really follow will emerge
later. For the moment, we have an initial idea of what the Theorem says and
why it might matter – enough, I hope, already to entice you to delve further into
the story that unfolds in this book.

1.5 The unprovability of consistency

If we can derive even a modest amount of basic arithmetic in theory T , then we’ll
be able to derive 0 �= 1.6 So if T also proves 0 = 1, it is inconsistent. Conversely, if
T is inconsistent, then – since we can derive anything in an inconsistent theory7

– it can prove 0 = 1. But we said that we can use numerical propositions to
encode facts about what can be derived in T . So there will in particular be a
numerical consistency sentence ConT that encodes the claim that we can’t derive
0 = 1 in T , i.e. encodes in a natural way the claim that T is consistent.

We know, however, that there is a numerical proposition which encodes the
claim that GT is unprovable: we have already said that it is GT itself.

So this means that (part of) the conclusion of Gödel’s First Theorem, namely
the claim that if T is consistent, then GT is unprovable, can itself be encoded by
a numerical proposition, namely ConT → GT . And now for another wonderful
Gödelian insight. It turns out that the informal reasoning that we use, outside
T , to show ‘if T is consistent, then GT is unprovable’ is elementary enough to
be mirrored by reasoning inside T (i.e. by reasoning with numerical propositions
which encode facts about T -proofs). Or at least that’s true so long as T satisfies
conditions only slightly stronger than the First Theorem assumes. So, again on
modest assumptions, we can derive ConT → GT inside T .

But the First Theorem has already shown that if T is consistent we can’t derive
GT in T . So it immediately follows that if T is consistent it can’t prove ConT .
And that is Gödel’s Second Incompleteness Theorem. Roughly interpreted: nice
theories that include enough basic arithmetic can’t prove their own consistency.8

6We’ll allow ourselves to abbreviate expressions of the form ¬σ = τ as σ �= τ .
7There are, to be sure, deviant non-classical logics in which this principle doesn’t hold. In

this book, however, we aren’t going to take further note of them, if only because of considera-
tions of space.

8That is rough. The Second Theorem shows that T can’t prove ConT , which is certainly
one natural way of expressing T ’s consistency inside T . But couldn’t there perhaps be some
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More implications?

1.6 More implications?

Suppose that there’s a genuine issue about whether T is consistent. Then even
before we’d ever heard of Gödel’s Second Theorem, we wouldn’t have been con-
vinced of its consistency by a derivation of ConT inside T . For we’d just note
that if T were in fact inconsistent, we’d be able to derive any T -sentence we like
in the theory – including a statement of its own consistency!

The Second Theorem now shows that we would indeed be right not to trust a
theory’s announcement of its own consistency. For (assuming T includes enough
arithmetic), if T entails ConT , then the theory must in fact be inconsistent.

However, the real impact of the Second Theorem isn’t in the limitations it
places on a theory’s proving its own consistency. The key point is this. If a
nice arithmetical theory T can’t even prove itself to be consistent, it certainly
can’t prove that a richer theory T+ is consistent (since if the richer theory
is consistent, then any cut-down part of it is consistent). Hence we can’t use
‘safe’ reasoning of the kind we can encode in ordinary arithmetic to prove other
more ‘risky’ mathematical theories are in good shape. For example, we can’t use
unproblematic arithmetical reasoning to convince ourselves of the consistency of
set theory (with its postulation of a universe of wildly infinite sets).

And that is a very interesting result, for it seems to sabotage what is called
Hilbert’s Programme, which is precisely the project of defending the wilder
reaches of infinitistic mathematics by giving consistency proofs which use only
‘safe’ methods. A lot more about this in due course.

1.7 What’s next?

What we’ve said so far, of course, has been very sketchy and introductory. We
must now start to do better. In Chapter 2, we introduce the notions of effective
computability, decidability and enumerability, notions we are going to need in
what follows. Then in Chapter 3, we explain more carefully what we mean by
talking about an ‘axiomatized theory’ and prove some elementary results about
axiomatized theories in general. In Chapter 4, we introduce some concepts relat-
ing specifically to axiomatized theories of arithmetic. Then in Chapters 5 and 6
we prove a pair of neat and relatively easy results – namely that any sound and
‘sufficiently expressive’ axiomatized theory of arithmetic, and likewise any con-
sistent and ‘sufficiently strong’ axiomatized theory, is negation incomplete. For
reasons that we’ll explain, these informal results fall some way short of Gödel’s
own First Incompleteness Theorem. But they do provide a very nice introduc-
tion to some key ideas that we’ll be developing more formally in the ensuing
chapters.

other sentence of T , Con′T , which also in some good sense expresses T ’s consistency, where T
doesn’t prove Con′T → GT but does prove Con′T ? We’ll return to this question in Sections 24.5
and 27.2.
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2 Decidability and enumerability

This chapter briskly introduces a number of concepts – mostly related to the
idea of computability – that we’ll need in the next few chapters. Later in the
book, we’ll return to some of these ideas and give sharper, technical, treatments
of them. But for present purposes, informal intuitive presentations are enough.

2.1 Functions

We’d better start, however, by very quickly reviewing some standard jargon and
notation for talking about functions, since functions will feature so prominently
in what follows. For simplicity, we’ll focus here on one-place functions (it will be
obvious how to generalize definitions to cover many-place functions).

Our concern will be with total functions f : ∆ → Γ, i.e. with functions which
map every element x of the domain ∆ to exactly one corresponding value f(x)
in the set Γ.1 We then say

i. The range of a function f : ∆ → Γ is {f(x) | x ∈ ∆}, i.e. the set of
elements in Γ that are values of f for arguments in ∆.

ii. A function f : ∆ → Γ is surjective iff the range of f is the whole of Γ – i.e.
if for every y ∈ Γ there is some x ∈ ∆ such that f(x) = y. (If you prefer
that in English, you can say that such a function is onto, since it maps
∆ onto the whole of Γ.)

iii. A function f : ∆ → Γ is injective iff f maps different elements of ∆ to
different elements of Γ – i.e. if x �= y then f(x) �= f(y). (If you prefer that
in English, you can say that such a function is one-to-one.)

iv. A function f : ∆ → Γ is bijective if it is both surjective and injective. (In
English again, f is then a one-one correspondence between ∆ and Γ.)

2.2 Effective decidability, effective computability

(a) Familiar school-room arithmetic routines (e.g. for testing whether a number
is prime) give us ways of effectively deciding whether some property holds. Other

1For wider mathematical purposes, the more general idea of a partial function becomes
essential. This is a mapping f which is not necessarily defined for all elements of its domain
(for an obvious example, consider the reciprocal function 1/x for rational numbers, which is
not defined for x = 0). However, we won’t need to say much about partial functions in this
book, and hence – by default – plain ‘function’ will henceforth always mean ‘total function’.
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Effective decidability, effective computability

routines (e.g. for squaring a number or finding the highest common factor of two
numbers) give us ways of effectively computing the value of a function.

What is meant by talking of effective procedures? Well, we are trying to
sharpen the otherwise rather vague, intuitive, notion of a computation. And the
core idea is that an effective procedure involves executing an algorithm which
successfully terminates.

Here, an algorithm is a set of step-by-step instructions (instructions which
are pinned down in advance of their execution), with each small step clearly
specified in every detail (leaving no room for doubt as to what does and what
doesn’t count as executing the step). More carefully, executing an algorithm (i)
involves an entirely determinate sequence of discrete step-by-small-step proce-
dures (where each small step is readily executable by a very limited calculating
agent or machine). (ii) There isn’t any room left for the exercise of imagination
or intuition or fallible human judgement. Further, in order to execute the proce-
dures, (iii) we don’t have to resort to outside ‘oracles’ (i.e. independent sources of
information), and (iv) we don’t have to resort to random methods (coin tosses).
Such algorithmic procedures can be followed by a dumb computer. Indeed, it is
natural to turn this observation into a first shot at an informal definition:

An algorithmic procedure is one that a suitably programmed com-
puter can execute.

But plainly, if an algorithmic procedure is actually to decide whether some
property holds or actually to compute a function, more is required. It needs to
terminate after a finite number of steps and deliver a result!

So, putting these ideas together, we can give two interrelated rough definitions:

A property/relation is effectively decidable iff there is an algorith-
mic procedure that a suitably programmed computer could use to
decide, in a finite number of steps, whether the property/relation
applies in any given case.

A total function is effectively computable iff there is an algorith-
mic procedure that a suitably programmed computer could use for
calculating, in a finite number of steps, the value of the function
for any given argument.2

(b) But what kind of computer do we have in mind here when we gesture
towards a definition by saying that an algorithmic procedure is one that a com-
puter can execute? We need to say something more about the relevant sort of
computer’s size and speed, and architecture.

A real-life computer is limited in size and speed. There will be some upper
bound on the size of the inputs it can handle; there will be an upper bound on
the size of the set of instructions it can store; there will be an upper bound on

2For more about how to relate these two definitions via the notion of a ‘characteristic
function’, see Section 11.6.
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2 Decidability and enumerability

the size of its working memory. And even if we feed in inputs and instructions it
can handle, it is of little practical use to us if the computer won’t finish executing
its algorithmic procedure for centuries.

Still, we are cheerfully going to abstract from all these ‘merely practical’ con-
siderations of size and speed – which is why we said nothing about them in
explaining what we mean by effective procedures. In other words, we will count
a function as being effectively computable if there is a finite set of step-by-
step instructions which a computer could in principle use to calculate the func-
tion’s value for any particular arguments, given memory, working space and time
enough. Likewise, we will say that a property is effectively decidable if there is
a finite set of step-by-step instructions a computer can use which is in princi-
ple guaranteed to decide whether the property applies in any given case, again
abstracting from worries about limitations of time and memory. Let’s be clear,
then: ‘effective’ here does not mean that the computation must be feasible for
us, on existing computers, in real time. So, for example, we count a numerical
property as effectively decidable in this broad sense even if on existing com-
puters it might take longer to compute whether a given number has it than we
have time left before the heat death of the universe. It is enough that there’s an
algorithm that works in theory and would deliver an answer in the end, if only
we had the computational resources to use it and could wait long enough.

‘But then,’ you might well ask, ‘why on earth bother with these radically
idealized notions of computability and decidability? If we allow procedures that
may not deliver a verdict in the lifetime of the universe, what good is that? If
we are interested in issues of computability, shouldn’t we really be concerned
not with idealized-computability-in-principle but with some stronger notion of
practicable computability?’

That’s a fair challenge. And modern computer science has much to say about
grades of computational complexity and levels of feasibility. However, we will
stick to our ultra-idealized notions of computability and decidability. Why? Be-
cause later we’ll be proving a range of limitative theorems, e.g. about what can’t
be algorithmically decided. By working with a very weak ‘in principle’ notion
of what is required for being decidable, our impossibility results will be corre-
spondingly very strong – they won’t depend on any mere contingencies about
what is practicable, given the current state of our software and hardware, and
given real-world limitations of time or resources. They show that some problems
can’t be mechanically decided, even on the most generous understanding of that
idea.

(c) We’ve said that we are going to be abstracting from limitations on storage,
etc. But you might suspect that this still leaves much to be settled. Doesn’t the
‘architecture’ of a computing device affect what it can compute?

The short answer is that it doesn’t (at least, once we are dealing with devices
of a certain degree of complexity, which can act as ‘general purpose’ computers).
And intriguingly, some of the central theoretical questions here were the subject
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